• Title/Summary/Keyword: image complexity

Search Result 944, Processing Time 0.023 seconds

IMAGE RESIZING IN AN ARBITRARY TRANSFORM DOMAIN

  • Oh, Hyung-Suk;Kim, Won-Ha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.44-48
    • /
    • 2009
  • This paper develops a methodology for resizing image resolutions in an arbitrary block transform domain. To accomplish this, we represent the procedures resizing images in an arbitrary transform domain in the form of matrix multiplications from which the matrix scaling the image resolutions is produce. The experiments showed that the proposed method produces the reliable performances without increasing the computational complexity, compared to conventional methods when applied to various transforms.

  • PDF

A fast decoding algorithm using data dependence in fractal image (프래탈 영상에서 데이타 의존성을 이용한 고속 복호화 알고리즘)

  • 류권열;정태일;강경원;권기룡;문광석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2091-2101
    • /
    • 1997
  • Conventional method for fractal image decoding requires high-degree computational complexity in decoding propocess, because of iterated contractive transformations applied to whole range blocks. In this paper, we propose a fast decoding algorithm of fractal image using data depence in order to reduce computational complexity for iterated contractive transformations. Range of reconstruction image is divided into a region referenced with domain, called referenced range, and a region without reference to domain, called unreferenced range. The referenced range is converged with iterated contractive transformations, and the unreferenced range can be decoded by convergence of the referenced range. Thus the unreferenced range is called data dependence region. We show that the data dependence region can be deconded by one transformation when the referenced range is converged. Consequently, the proposed method reduces computational complexity in decoding process by executing iterated contractive transformations for the referenced range only.

  • PDF

A Sclable Parallel Labeling Algorithm on Mesh Connected SIMD Computers (메쉬 구조형 SIMD 컴퓨터 상에서 신축적인 병렬 레이블링 알고리즘)

  • 박은진;이갑섭성효경최흥문
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.731-734
    • /
    • 1998
  • A scalable parallel algorithm is proposed for efficient image component labeling with local operatos on a mesh connected SIMD computer. In contrast to the conventional parallel labeling algorithms, where a single pixel is assigned to each PE, the algorithm presented here is scalable and can assign m$\times$m pixel set to each PE according to the input image size. The assigned pixel set is converted to a single pixel that has representative value, and the amount of the required memory and processing time can be highly reduced. For N$\times$N image, if m$\times$m pixel set is assigned to each PE of P$\times$P mesh, where P=N/m, the time complexity due to the communication of each PE and the computation complexity are reduced to O(PlogP) bit operations and O(P) bit operations, respectively, which is 1/m of each of the conventional method. This method also diminishes the amount of memory in each PE to O(P), and can decrease the number of PE to O(P2) =Θ(N2/m2) as compared to O(N2) of conventional method. Because the proposed parallel labeling algorithm is scalable, we can adapt to the increase of image size without the hardware change of the given mesh connected SIMD computer.

  • PDF

Morphological Feature Extraction of Microorganisms Using Image Processing

  • Kim Hak-Kyeong;Jeong Nam-Su;Kim Sang-Bong;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • This paper describes a procedure extracting feature vector of a target cell more precisely in the case of identifying specified cell. The classification of object type is based on feature vector such as area, complexity, centroid, rotation angle, effective diameter, perimeter, width and height of the object So, the feature vector plays very important role in classifying objects. Because the feature vectors is affected by noises and holes, it is necessary to remove noises contaminated in original image to get feature vector extraction exactly. In this paper, we propose the following method to do to get feature vector extraction exactly. First, by Otsu's optimal threshold selection method and morphological filters such as cleaning, filling and opening filters, we separate objects from background an get rid of isolated particles. After the labeling step by 4-adjacent neighborhood, the labeled image is filtered by the area filter. From this area-filtered image, feature vector such as area, complexity, centroid, rotation angle, effective diameter, the perimeter based on chain code and the width and height based on rotation matrix are extracted. To prove the effectiveness, the proposed method is applied for yeast Zygosaccharomyces rouxn. It is also shown that the experimental results from the proposed method is more efficient in measuring feature vectors than from only Otsu's optimal threshold detection method.

  • PDF

Visual Tracking Using Monte Carlo Sampling and Background Subtraction (확률적 표본화와 배경 차분을 이용한 비디오 객체 추적)

  • Kim, Hyun-Cheol;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.16-22
    • /
    • 2011
  • This paper presents the multi-object tracking approach using the background difference and particle filtering by monte carlo sampling. We apply particle filters based on probabilistic importance sampling to multi-object independently. We formulate the object observation model by the histogram distribution using color information and the object dynaminc model for the object motion information. Our approach does not increase computational complexity and derive stable performance. We implement the whole Bayesian maximum likelihood framework and describes robust methods coping with the real-world object tracking situation by the observation and transition model.

Low Complexity Motion Estimation Search Method for Multi-view Video Coding (다시점 비디오 부호화를 위한 저 복잡도 움직임 추정 탐색 기법)

  • Yoon, Hyo-Sun;Kim, Mi-Young
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.539-548
    • /
    • 2013
  • Although Motion estimation (ME) plays an important role in digital video compression, it requires a complicated search procedure to find an optimal motion vector. Multi-view video is obtained by capturing one three-dimensional scene with many cameras at different positions. The computational complexity of motion estimation for Multi-view video coding increases in proportion to the number of cameras. To reduce computational complexity and maintain the image quality, a low complexity motion estimation search method is proposed in this paper. The proposed search method consists of four-grid diamond search patten, two-gird diamond search pattern and TZ 2 Point search pattern. These search patterns exploit the characteristics of the distribution of motion vectors to place the search points. Experiment results show that the speedup improvement of the proposed method over TZ search method (JMVC) can be up to 1.8~4.5 times faster by reducing the computational complexity and the image quality degradation is about to 0.01~0.24 (dB).

Scalable Interframe Wavelet Coding with Low Complex Spatial Wavelet Transform

  • Kim, Won-Ha;Jeong, Se-Yoon;Kim, Kyu-Heon
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • In the decoding process associated with interframe wavelet coding, the inverse wavelet transform requires high computational complexity. However, as video technology starts to pervade all aspects of our lives, decoders are becoming required in various devices such as PDAs, notebooks, PCs, and set-top boxes. Therefore, a decoder's complexity needs to be adapted to the processor's computational power, and consequently a low-complexity codec is also required for scalable video coding. In this paper, we propose a method of controlling and lowering the complexity of the spatial wavelet transform while sustaining the same coding efficiency as that currently afforded. In addition, the proposed method may alleviate the ringing effect for slowly changing image sequences.

  • PDF

Fast Detection of Forgery Image using Discrete Cosine Transform Four Step Search Algorithm

  • Shin, Yong-Dal;Cho, Yong-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.527-534
    • /
    • 2019
  • Recently, Photo editing softwares such as digital cameras, Paintshop Pro, and Photoshop digital can create counterfeit images easily. Various techniques for detection of tamper images or forgery images have been proposed in the literature. A form of digital forgery is copy-move image forgery. Copy-move is one of the forgeries and is used wherever you need to cover a part of the image to add or remove information. Copy-move image forgery refers to copying a specific area of an image itself and pasting it into another area of the same image. The purpose of copy-move image forgery detection is to detect the same or very similar region image within the original image. In this paper, we proposed fast detection of forgery image using four step search based on discrete cosine transform and a four step search algorithm using discrete cosine transform (FSSDCT). The computational complexity of our algorithm reduced 34.23 % than conventional DCT three step search algorithm (DCTTSS).

Adaptive De-interlacing Algorithm using Method Selection based on Degree of Local Complexity (지역 복잡도 기반 방법 선택을 이용한 적응적 디인터레이싱 알고리듬)

  • Hong, Sung-Min;Park, Sang-Jun;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4C
    • /
    • pp.217-225
    • /
    • 2011
  • In this paper, we propose an adaptive de-interlacing algorithm that is based on the degree of local complexity. The conventional intra field de-interlacing algorithms show the different performance according to the ways which find the edge direction. Furthermore, FDD (Fine Directional De-interlacing) algorithm has the better performance than other algorithms but the computational complexity of FDD algorithm is too high. In order to alleviate these problems, the proposed algorithm selects the most efficient de-interacing algorithm among LA (Line Average), MELA (Modified Edge-based Line Average), and LCID (Low-Complexity Interpolation Method for De-interlacing) algorithms which have low complexity and good performance. The proposed algorithm is trained by the DoLC (Degree of Local Complexity) for selection of the algorithms mentioned above. Simulation results show that the proposed algorithm not only has the low complexity but also performs better objective and subjective image quality performances compared with the conventional intra-field methods.

Low Complexity Hybrid Interpolation Algorithm using Weighted Edge Detector (가중치 윤곽선 검출기를 이용한 저 복잡도 하이브리드 보간 알고리듬)

  • Kwon, Hyeok-Jin;Jeon, Gwang-Gil;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.241-248
    • /
    • 2007
  • In predictive image coding, a LS (Least Squares)-based adaptive predictor is an efficient method to improve image edge predictions. This paper proposes a hybrid interpolation with weighted edge detector. A hybrid approach of switching between bilinear interpolation and EDI (Edge-Directed Interpolation) is proposed in order to reduce the overall computational complexity The objective and subjective quality is also similar to the bilinear interpolation and EDI. Experimental results demonstrate that this hybrid interpolation method that utilizes a weighted edge detector can achieve reduction in complexity with minimal degradation in the interpolation results.