• Title/Summary/Keyword: image Vision

Search Result 2,584, Processing Time 0.029 seconds

Cracks Detection of Concrete Slab Surface using ART2 based Quantization (ART2 기반 양자화를 이용한 콘크리트 슬래브 표면의 균열 검출)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1897-1902
    • /
    • 2008
  • In computer vision analysis of detecting concrete slab surface cracks, there are many difficulties to overcome. Target images often have defamations due to the light condition and other external environment. Another difficulties in detecting concrete crack image is that there is no clear distinction in intensity between the crack and the surface since the surface is often irregular. In this paper, we apply ART2 based quantization in order to classify target concrete slab surface images into several areas with respect to the light intensity. From those quantized areas, we investigate the distribution of real cracks and noises. Then, we extract candidate crack areas after applying noise removal process to areas which have be th oracle and noises. Finally, crack areas are recognized by using morphological features of cracks from such candidate areas. In experiment with real world concrete slab structure images, our algorithm has advantage in recognizing accuracy of cracks to other algorithms especially in relatively brighter areas of concrete surface.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

Implemented of Integrated Interface Control Unit with Compatible and Improve Brightness of Existing Full Color LED Display System (Full Color LED 디스플레이장치와 휘도 개선과 호환성을 갖는 통합인터페이스 제어장치 구현)

  • Lee, Ju-Yeon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.90-96
    • /
    • 2021
  • In this paper, we designed manufactured and design an integrated interface control unit that has compatibility with brightness control unit, color control unit, and existing control unit. As the implementation method the standard of DVI/HDMI transmission method is applied to the data transmission method, and the Sil 1169 IC is used as the applied IC. Brightness control is programmed to have eight levels of brightness control using the AT89C2051. Also, EPM240T100C5 IC was used for image and dimming data processing. As a result, it is compatible with the control unit using the DVI/HDMI transmission method manufactured by each company and can reproduce clear high quality full HD video according to the surrounding brightness through the full color LED display system.

Implementation of Facility Movement Recognition Accuracy Analysis and Utilization Service using Drone Image (드론 영상 활용 시설물 이동 인식 정확도 분석 및 활용 서비스 구현)

  • Kim, Gwang-Seok;Oh, Ah-Ra;Choi, Yun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.88-96
    • /
    • 2021
  • Advanced Internet of Things (IoT) technology is being used in various ways for the safety of the energy industry. At the center of safety measures, drones play various roles on behalf of humans. Drones are playing a role in reaching places that are difficult to reach due to large-scale facilities and space restrictions that are difficult for humans to inspect. In this study, the accuracy and completeness of movement of dangerous facilities were tested using drone images, and it was confirmed that the movement recognition accuracy was 100%, the average data analysis accuracy was 95.8699%, and the average completeness was 100%. Based on the experimental results, a future-oriented facility risk analysis system combined with ICT technology was implemented and presented. Additional experiments with diversified conditions are required in the future, and ICT convergence analysis system implementation is required.

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.

A Blocking Algorithm of a Target Object with Exposed Privacy Information (개인 정보가 노출된 목표 객체의 블로킹 알고리즘)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.43-49
    • /
    • 2019
  • The wired and wireless Internet is a useful window to easily acquire various types of media data. On the other hand, the public can easily get the media data including the object to which the personal information is exposed, which is a social problem. In this paper, we propose a method to robustly detect a target object that has exposed personal information using a learning algorithm and effectively block the detected target object area. In the proposed method, only the target object containing the personal information is detected using a neural network-based learning algorithm. Then, a grid-like mosaic is created and overlapped on the target object area detected in the previous step, thereby effectively blocking the object area containing the personal information. Experimental results show that the proposed algorithm robustly detects the object area in which personal information is exposed and effectively blocks the detected area through mosaic processing. The object blocking method presented in this paper is expected to be useful in many applications related to computer vision.

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

A Study on Smoke Detection using LBP and GLCM in Engine Room (선박의 기관실에서의 연기 검출을 위한 LBP-GLCM 알고리즘에 관한 연구)

  • Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.111-116
    • /
    • 2019
  • The fire detectors used in the engine rooms of ships offer only a slow response to emergencies because smoke or heat must reach detectors installed on ceilings, but the air flow in engine rooms can be very fluid depending on the use of equipment. In order to overcome these disadvantages, much research on video-based fire detection has been conducted in recent years. Video-based fire detection is effective for initial detection of fire because it is not affected by air flow and transmission speed is fast. In this paper, experiments were performed using images of smoke from a smoke generator in an engine room. Data generated using LBP and GLCM operators that extract the textural features of smoke was classified using SVM, which is a machine learning classifier. Even if smoke did not rise to the ceiling, where detectors were installed, smoke detection was confirmed using the image-based technique.

Human Legs Stride Recognition and Tracking based on the Laser Scanner Sensor Data (레이저센서 데이터융합기반의 복수 휴먼보폭 인식과 추적)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.247-253
    • /
    • 2019
  • In this paper, we present a new method for real-time tracking of human walking around a laser sensor system. The method converts range data with $r-{\theta}$ coordinates to a 2D image with x-y coordinates. Then human tracking is performed using human's features, i.e. appearances of human walking pattern, and the input range data. The laser sensor based human tracking method has the advantage of simplicity over conventional methods which extract human face in the vision data. In our method, the problem of estimating 2D positions and orientations of two walking human's ankle level is formulated based on a moving trajectory algorithm. In addition, the proposed tracking system employs a HMM to robustly track human in case of occlusions. Experimental results using a real system demonstrate usefulness of the proposed method.