• 제목/요약/키워드: ignition gap

검색결과 42건 처리시간 0.029초

A Study on the Development of Ignition Trans applied to Gas Boiler (가스보일러에 적용되는 점화 트랜스 개발에 관한 연구)

  • Lee, Ho-kyun;Kim, Jang-Won;Park, Jung-cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제14권6호
    • /
    • pp.467-472
    • /
    • 2021
  • In this paper, the ignition trans used in the gas boiler was produced to measure current, power factor, and power consumption. As a result of measuring the power factor, the self-made ignition trans was higher than that of foreign products and the power consumption was lower. The ignition gap was fixed to 2 m, and when the ignition rod length was 30cm, 500cm, and 1000cm, it was measured as 3.45A, 14.5A, and 16.2A. When the ignition gap was fixed to 4mm and the ignition rod length was 30cm, 500cm, and 1000cm, it was measured as 2.8A, 10.1A, and 13.2A. When the ignition gap was fixed at 6mm and the ignition rod length was 30cm, 500cm, and 1000cm, it was measured as 2.73A, 10.2A, and 32.6A. When the ignition gap was fixed at 8 mm and the ignition rod length was 30 cm, 500cm, and 1000cm, it was measured as 3.13A, 9.37A, and 21.4. The ignition gap was fixed at 10 mm, and when the ignition rod length was 30cm, it was measured as 3.4A, 14.4 A, and 25.6A. In conclusion, as the length of the ignition rod increased, the current also increased.

A Study on the Development of Low Frequency Electronic Ignition Trans for Large Combustors (대형연소기에 적용되는 저주파 전자식 점화 트랜스 개발에 관한 연구)

  • Lee, Ho-kyun;Park, Jung-cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제15권4호
    • /
    • pp.223-229
    • /
    • 2022
  • In this paper, the ignition trans used in boilers was studied. Regardless of the change in the ignition rod length and the ignition rod gap, the output frequency was measured between 59.5 and 61.3 Hz, and it was found that the low frequency circuit operated normally. When the ignition rod gap changed by 2 to 10 mm, the ignition rod length was measured from 2.8A to 3.45A at 30cm. The ignition rod length was measured from 9.37 A to 14.5 A at 500 cm and from 13.2 A to 32.6 A at 1000 cm. As the ignition rod length and the ignition rod gap increased, the current increased. As a result of measuring the secondary coil output voltage. The ignition rod length was measured from AC 0.84 kV to AC 1.75 kV at 30 cm, AC 1.17 kV to AC 1.944 at 500 cm, and AC 1.4 kV to AC 7.18 kV at 1000 cm. As the ignition rod length and the ignition rod gap increased, the output voltage of the secondary coil also increased. As a result of measuring the output voltage of the ignition trans, the ignition rod length was measured from DC 1.11 kV to DC 1.57 kV at 30cm, DC 2.49 kV to DC 3.72 kV at 500cm, and DC 3.78 kV to DC 9.42 kV at 1000cm, and the power voltage increased as the ignition rod length and interval increased.

The Measurement of Minimum Ignition Energy and Explosion Limit for Pine Tree Dust (소나무 분진의 최소착화에너지와 폭발한계 측정에 관한 연구)

  • Choi Il-Gon;Cho Il-Keon;Mok Yun-Soo;Lee Dong-Hoon;Choi Jae-Wook;Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • 제2권2호
    • /
    • pp.55-60
    • /
    • 1998
  • In this study, we investigated the dust explosion characteristics by determining minimum ignition energy and explosion limit for this experiment, we used pine-tree dust which was used widely for the filler of thermosetting resin. The experiment was accomplished according to the variation of discharge gap, dust concentration, particle size and humidity. The result of this experiment are as follows; (1) The relation between the discharge gap and ignition energy was that ignition energy decreased according as the discharge gap became small, but increased when the discharge gap was below 4mm and suddenly became infinite when the discharge gap was below. So, we knew that this infinite value was limit discharge gap. (2) When the dust concentration increase and the particle size became microscopic it was easy to explore and in the same particle size, if the humidity increase the minimum ingnition energy decreased.

  • PDF

The Study about The Minimum Ignition Energy for Electrostatic Discharge in The Gasoline-air Mixture (정전기 방전에 의한 개소린-공기혼합기체의 최소착화에너지에 관한 연구)

  • 황명환;이덕출
    • Fire Science and Engineering
    • /
    • 제10권1호
    • /
    • pp.3-9
    • /
    • 1996
  • Electrostatic charge is generated in large scale or high speed processes dealing with materials with large resistance, or under complicated condition. Fire and explosion often occur due to electrostatic charge accumulated in flammable gases, vapor, liquids and powder. It is usually very difficult to verify the cause of accidents as well as the prevention. In this study, it is shown that the needle electrode needs the electrode gap from 1.8mm to 3.8mm, sphere electrode and plate electrodes need the electrode gap of 1.9mmfor the minimum ignition energy. The sphere electrode and the plate electrode requires 12.8mJ and 3.2mJ of minimum ignition energy respectively with the electrode gap of 1.1mm. The ignition voltage rises to very large value as the ground resistance increases.

  • PDF

The Experimental Research On The Electrical Characteristics For The Ignition Of Plasma Jet Using The Advance Discharge Of High Frequency Voltage With Attenuation (감쇠파 고주파전압의 선행방전을 이용한 Plasma jet의 전기적 기동특성에 대한 실험적 연구)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • 제21권4호
    • /
    • pp.27-38
    • /
    • 1972
  • This paper discusses the characteristics about the ignition of D.C. main discharge is a plasma jet generator, manufactured for trial as non-transferred type, when the electrical energy appropriate to the ignition is supplied to the gap between the electrodes by using advance discharge of attenuating high frequency voltage generated by a high frequency oscillator with mercury spark gap. These characteristics are under the influences of (a) the length of mercury gap in high frequency oscillator and the quantity of hydrogen flow supplied to it, (b) the condenser capacity of the high frequency oscillator circuit, (c) the length of plasma jet torch in D.C. main discharge circuit and the quantity of argon flow supplied to it, (d) the circuit constants of D.C. main discharge circuit. The results for these characteristics, obtained by this research, are considered to be helpful to the designs for the ignition of a plasma jet as well as the welding arc stabilizer by high frequency discharge and the high frequency arc welder.

  • PDF

A Visualization Study on the Effects of Ignition Systems on the Flame Propagation in a Constant Volume Combustion Chamber (가시화를 이용한 정적연소기에서 점화장치가 화염전파에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제24권12호
    • /
    • pp.1652-1661
    • /
    • 2000
  • A visualization study using the schlieren method is adopted in an optically-accessible, cylindrical constant volume combustion chamber to identify the mechanism of ignition energy and ignition system interaction in spark ignited, lean gasoline-air mixture. In order to research the effects of ignition system on flame propagation, two kinds of ignition system are designed, and several kinds of spark plugs are tested and evaluated. To control the discharge energy, the dwell time is varied. The initial flame development is quantified in terms of 2-D images which provides information about the projected flame area and development velocity as a function of ignition system and discharge energy. The results show that high ignition energy and extended spark plug gap can shorten the combustion duration in lean mixtures. The material, diameter and configuration of electrodes the flame development by changing the transfer efficiency from electrical energy to chemical energy and discharge energy. However these factors do not affect of flame development as much a ignition energy or extended gap does.

Re-ignition System using Vacuum Triggered Gap-switch for Synthetic Breaking Test

  • Park Seung-Jae;Suh Yoon-Taek;Kim Dae-Won;Kim Maeng-Hyun;Song Won-Pyo;Koh Hee-Seog
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권4호
    • /
    • pp.145-151
    • /
    • 2005
  • The synthetic breaking test method was developed to evaluate the breaking performance of ultra high-voltage circuit breaker and made up of two independent circuits; current source circuit and voltage source circuit. In application of this test method, it is necessary to extend the arc of the test breaker. So, the new re-ignition system using VTGS (Vacuum Triggered Gap-Switch) was constructed to improve the efficiency and reliability of this test. In this re-ignition system, VTGS operates in high vacuum state of $5{\time}10^{17}$torr and control system consists of the triggering device and the air M-G (Motor-Generator). This re-ignition system showed the operating characteristics, such as delay time ($t_d$) and jitter time ($t_j$ not exceeding 5us and 1us respectively, and had the operating voltage of $25\~150kVdc$ at the gap distance of 24mm.

A Study on the Safe Gap for Explosion-proof (내압방폭을 위한 Safe Gap의 측정에 관한 연구)

  • Oh Kyu-hyung
    • Journal of the Korean Institute of Gas
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 1997
  • In case of using the electrical apparatus in the hazardous atmosphere which exist flammable gas mixtures, There is a dangerosity of gas explosion accident by the electrical spark. The most general method to prevent the explosion by the spark is to use the flame-proof type electrical apparatus to isolate the ignition source. from the flammable atmosphere. But actualy it is impossible to isolate the ignition sources from the atmosphere. So it was needed to find the safe gap which prevent ignition of flammable atmosphere by transmission of flame or heat when a flammable gas mixture exploded inside the apparatus. In this study we tried to find the maximum experimental safe gap(MESG) of $H_2$-air, and $CH_4$-air mixtures by using the 8 litre spherical vessel with 25mm flange. The experiment parameter were ignition position, concentration and initial pressure before explosion. From the experiment the ignition position was affected to the MESG. MESG value was minimum near the stoichiometric concentration of gas mixtures, and according to the increase of initial pressure MESG was decreased.

  • PDF

A Study on Explosion Characteristics of Terephthalic Acid (테레프탈산의 분진 폭발특성에 관한 연구)

  • 목연수;장성록
    • Journal of the Korean Society of Safety
    • /
    • 제15권1호
    • /
    • pp.121-125
    • /
    • 2000
  • This study was executed by dust explosion experiment of terephthalic acid which was widely used for various purposes of food packing material and film etc. and the demand was rapidly increasing. The particle size and concentration of dust affected the minimum ignition energy largely and the lean concentration and the minimum ignition energy in the range of this study were obtained 50$g/m^3$ and 19mJ respectively. Minimum ignition energy was shown at the 4 and 5mm gap distance of discharge electrode, and when the gap distance was below 2mm the explosion could not generated although the sufficient energy was given. It was also found that the ignition energy decreased linearly with the decreasing of dust mean particle size.

  • PDF

Effect of Ignition Delay Time Gap on the Linked Pyrotechnic Thrusters (파이로추력기의 점화시간차 영향)

  • Kim, Ki-Un;Jeon, In-Soo;Ahn, Sung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제14권1호
    • /
    • pp.154-159
    • /
    • 2011
  • The effect of the ignition delay time gap is newly studied. The operational characteristics of the linked two pyrotechnic thrusters are affected by the time gap. Although two thrusters are simultaneously ignited, the time at which the pressure starts to rise in each thruster may not be synchronized. The characteristic of the system with the time gap is compared with that of the fully synchronized system without any time gap. Depending upon the magnitude of the time gap, the pressure-time profile and the ballistic performance are different. When two pyrotechnic thrusters have a time gap, the peak pressure of one thruster(in which the pressure is built up earlier) is increased and the other is decreased. As the time gap is increased, the peak pressure is converged into the maximum pressure. This maximum pressure can be obtained when only one thruster is activated. Because the maximum pressure is bounded, it is predicted that there isn't any catastrophic failures in the considered system. When the time gap is relatively small, the impulse of the combined force acting on the moving body is almost maintained. But the ballistic performance of the system with a large time gap should be carefully estimated because the reduction of the ballistic performance should not be easily neglected.