• Title/Summary/Keyword: igniter

Search Result 139, Processing Time 0.022 seconds

A Experimental Study for Improving Performance of Igniter for Amateur Small Rockets (아마추어 소형로켓 점화기 성능 향상을 위한 실험적 연구)

  • Sim, Ju-Hyen;Lim, Seung-Vin;Park, Sang-Sub;Park, Wan-Ju;Lee, Jin-Sung;Choi, Jae-Won;Hong, Ju-Hyun;Chae, Jae-Ou
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.353-358
    • /
    • 2008
  • Inha Rocket Research Institute has made the igniter that is combination of black powder and PVA polymer for ignition small rocket. But recent igniter is not satisfy because of the performance of igniter is not identified. So, we confirmed requirement of igniter by comparing of ratio of black powder and PVA through experimental method. Especially we studied with ignition temperature for propellant and stable combustion pressure that is requirements of propellant. We can know the tendency of combustion properties by ratio of oxidizer and combustion catalyst through changing of temperature and pressure of exhaust gas of igniter.

  • PDF

Flow Characteristics with Distance between Solid Propellant Grain and Igniter (고체 추진제와 점화기 간 간격에 따른 유동 특성)

  • Kang, Donggi;Choi, Jaesung;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.96-107
    • /
    • 2018
  • Flow analysis using computational fluid dynamics was conducted to investigate the effect of the igniter flame caused by the gap between the igniter and the propellant grain in a solid rocket motor. Two propellant grain types were assumed; namely cylinder type (1 mm, 3 mm, and 5 mm gap) and the slot type. The slot type had two igniter hole locations. One was located at the small gap of the propellant grain, and the other one was located at the large gap. In the case of the cylinder type, the pressure in the igniter zone was higher with a thinner gap. Additionally, in the case of the cylinder type, the pressure difference between the igniter installed zone and the free volume was also higher as the gap became lower. The cylinder types were affected by the gap distance, but the slot types were not. Moreover, the results of the slot types were similar to the 5-mm gap case of the cylinder type.

Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor (모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구)

  • Jin, Yu-In;Ryu, Gyong Won;Min, Seong Ki;Kim, Hong Jip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

Fabrication Method and Performance Evaluation of Micro Igniter for MEMS Thruster (MEMS 추력기를 위한 마이크로 점화기의 제작 방법 및 성능 평가)

  • Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Micro igniter on the glass membrane for MEMS thruster was developed. The stability of the micro igniter by using a glass membrane with a thickness of tens of microns was improved. The micro igniter was fabricated by anisotropic wet etching of photosensitive glass and deposition of Pt/Ti for electric heat coil. The solid propellant was loaded into the propellant chamber without an especial technique due to the high structural stability of the glass membrane. Ignition tests were performed successfully. The minimum ignition delay was 27.5 ms with an ignition energy of 19.3 mJ.

Development of an Igniter for Pyrostarters (파이로스타터용 점화기 개발)

  • Park, Ho-Jun;Hong, Moon-Geun;Kwon, Mi-Ra;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.149-152
    • /
    • 2009
  • A pyrostarter is a sort of gas generator, which supplies the energy to drive turbines by the combustion gas of a solid propellant charged internally. The igniter of the pyrostarter should guarantee the ignition reliability expecially for the solid propellant with a low fame temperature. For the development of the igniter, several closed bomb testes have been performed to decide several design parameters to get a sufficient chamber pressure build-up for the ignition. Moreover, as a result of the firing testes with pyrostarters, the ignition reliability have been verified and the amount of igniter propellants has been reviewed.

  • PDF

A Simulation Study on Designing Ignitors for HID Lamps (HID용 이그나이터의 설계를 위한 시뮬레이션 연구)

  • Han, Soo-Bin;Park, Suck-In;Jung, Bong-Man;Jeoung, Hak-Guen;Song, Eu-Gine;Kim, Gue-Duck
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.51-53
    • /
    • 2007
  • Ballasts for HID lamp need a igniter to start the lamp with very high voltage over several kV. Electronic ballasts use various internal igniter in electronic circuits. The paper describe the simulation method for designing the igniter, which helps selecting the component properly by estimating operation voltage and current in circuits.

  • PDF

Performance Evaluation of Components of Micro Solid Propellant Thruster (마이크로 고체 추진제 추력기 요소의 성능 평가)

  • Lee Jongkwang;Lee Dae Hoon;Choi Sunghan;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1264-1270
    • /
    • 2004
  • In this paper research on micro solid propellant thruster is reported. Micro solid propellant thruster has four basic components; micro combustion chamber, micro nozzle, solid propellant and micro igniter. In this research igniter, solid propellant and combustion chamber are focused. Micro igniter was fabricated through typical micromachining and the effect of geometry was evaluated. The characteristic of solid propellant was investigated to observe burning characteristic and to obtain burning velocity. Change of thrust force and the amount of energy loss following scale down at micro combustion chamber were estimated by numerical simulation based on empirical data and through the calculation normalized specific impulses were compared to figure out the efficiency of combustion chamber.

Studies on Igniter Jet Turbulence Effect on the Ballistics of Solid Rocket Motors

  • Sanal Kumar V.R.;Kim H. D.;Setoguchi T.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.57-60
    • /
    • 2005
  • A diagnostic investigation is carried out to examine the igniter jet turbulence effects on the internal ballistics of solid rocket motors with divergent port. The numerical studies have been carried out with the help of a two dimensional k-omega turbulence model. It was inferred that increasing the igniter jet turbulence intensity is a possible way to decrease the pressure spike and pressurization rate, marginally during the ignition transient, by altering the location of the secondary ignition in solid rocket motors with non-uniform port.

  • PDF

Ignition Studies Of Igniter using Hydrogen Peroxide And Kerosene (Catalyst Ignition) (과산화수소/케로신(촉매점화) 점화기의 점화특성에 관한 연구)

  • Kim, Ki-Woo;Kim, Tae-Wan;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.57-60
    • /
    • 2009
  • Exothermic and ignition characteristic of igniter is very important factor in engine performance. Since the igniter performance is effected by Hydrogen Peroxide decomposition rate, we have to test the preliminary catalyst performance test. In this report, after making igniter using hydrogen peroxide/kerosene, a thermal characteristic were examined by comparing hydrogen peroxide mass and catalyst mass. And then we study ignition characteristic of the affects of O/F ratio using the previous data.

  • PDF

Electrical Resistivity and NTC/PTC Transition Point of a Nitrogen-Doped SiC Igniter, and Their Correlation to Electrical Heating Properties

  • Jeon, Young-Sam;Shin, Hyun-Ho;Yoo, Dong-Joo;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.124-129
    • /
    • 2012
  • An M-shaped SiC gas igniter was fabricated by a reaction sintering followed by nitrogen doping. The igniter showed both resistivity at room temperature and NTC to PTC transition temperature values that were lower than those of commercial igniters. It was deduced that the doped nitrogen reduces the electrical resistivity at room temperature, while, at high temperature, the doped nitrogen and a trace of $Si_3N_4$ phase work as scattering centers against electron transfer, resulting in a lowered NTC-to-PTC transition point (below $650^{\circ}C$). Such characteristics were correlated to the fast heating speed (as compared to the commercial models) and to the prevention of the high temperature overshooting of the nitrogen-doped SiC igniter.