• Title/Summary/Keyword: idle mode

Search Result 90, Processing Time 0.021 seconds

ENGINE CONTROL USING SPEED FEEDBACK

  • Stotsky, A.;Solyom, S.;Kolmanovsky, I.V.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.477-481
    • /
    • 2007
  • In this article we present a new, reference model based, unified strategy for engine control. Three main modes are considered: first is the driver control mode where the driver controls the engine via the pedal position; second is the dashpot mode, that is, when the driver takes his foot off the pedal; and, lastly is the idle speed control mode. These modes are unified so that seamless transitions between modes now becomes possible. The unification is achieved due to the introduction of a reference model for the engine speed whereby only the desired engine speed is different for different modes while the structure of the control system remains the same for all the modes. The scheme includes an observer that estimates unknown engine load torque. A proof of robustness with respect to unknown load disturbances both within the operating modes and during intermode transitions is given.

Operation Modes of a Power Split Hybrid Electric Vehicle (동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션)

  • Ahn Kuk-Hyun;Cho Sung-Tae;Lim Won-Sik;Park Yeong-Il;Lee Jang-Moo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.23-27
    • /
    • 2006
  • The power split hybrid powertrain is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF

Operation Modes of a Power Split Hybrid Electric Vehicle (동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션)

  • Ahn, Kuk-Hyun;Cho, Sung-Tae;Lim, Won-Sik;Park, Yeong-Il;Lee, Jang-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.547-550
    • /
    • 2006
  • The power split hybrid power train is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF

Design and Control Strategy for Autonomous and Seamless Mode Transition of High Efficiency Bidirectional DC-DC Converter for ISG Systems (ISG 시스템용 고효율 양방향 DC-DC 컨버터의 설계 및 자율적이며 끊김없는 모드전환을 위한 제어전략)

  • Park, Jun-Sung;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this study, a bidirectional DC-DC converter for idle stop and go (ISG) is developed to reduce fuel consumption. A three-phase non-isolated half-bridge converter is selected through a design method by considering efficiency and volume. According to the state of charge of the batteries at both the low-voltage and high-voltage sides, buck mode, which charges a low-voltage battery from the generated motor energy, and boost mode, which provides power to the motor from the low- and high-voltage battery sides, are required in the ISG system. Hence, an autonomous and seamless bidirectional control method using a variable current limiter is proposed for mode change. A 1.8 kW engineering sample of the proposed converter has been built and tested to verify the validity of the proposed concept. The maximum efficiencies, including gate driver and control circuit losses, are 96.4% in charging mode and 96.1% in discharging mode.

Dynamic Shutdown of Server Power Mode Control for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 서버 전원 모드 제어에서의 동적 종료)

  • Kim, Hoyeon;Ham, Chihwan;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.7
    • /
    • pp.283-292
    • /
    • 2013
  • In order to ensure high performance, all the servers in an existing server cluster are always On regardless of number of real-time requests. They ensure QoS, but waste server power if some of them are idle. To save energy consumed by servers, the server power mode control was developed by shutdowning a server when a server is not needed. There are two types of server power mode control depending on when a server is actually turned off if the server is selected to be off: static or dynamic. In a static mode, the server power is actually turned off after a fixed time delay from the time of the server selection. In a dynamic mode, server power is actually turned off if all the services served in the server are done. This corresponds to a turn off after a variable time delay. The static mdoe has disadvantages. It takes much time to find an optimal shutdown time manually through repeated experiments. In this paper, we propose a dynamic shutdown method to overcome the disadvantages of static shutdown. The proposed method allows to guarantee user QoS with good power-saving because it automatically approaches an optimal shutdown time. We performed experiments using 30 PCs cluster. Experimental results show that the proposed dynamic shutdown method is almost same as the best static shutdown in terms of power saving, but better than the best static shutdown in terms of QoS.

Power Management Strategy and Performance Evaluation for OpenStack Object Storage (오픈스택 기반 객체 스토리지를 위한 전력관리 기법과 성능 평가)

  • Ahn, Cheong-Jin;Song, Tae-Gun;Lee, Byeong-Hyeon;Kim, Deok-Hwan
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.6
    • /
    • pp.296-301
    • /
    • 2016
  • Object-based storage is an efficient storage solution that can handle unstructured data and shows better security and scalability than traditional block-based storage. However, in terms of power management, Object-based storage writes multiple copies in storage cluster, hence many servers consume unnecessary power in idle state. In order to resolve this problem, it is necessary to apply power management strategy by adjusting power mode of servers in idle state according to their workloads. In this paper, we proposed a new dynamic power management (DPM) method to transform power mode of storage servers dynamically according to workload information sent from proxy server. The experimental result shows that the proposed power management technic reduces total power consumption by 12% in the OpenStack based Swift object storage.

A Multicast Polling Scheme for Idle Station in IEEE 802.11 Wireless Networks

  • Lee, Sang-Don;Song, Jung-Hoon;Han, Ki-Jun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.322-324
    • /
    • 2004
  • IEEf 802.11 Point Coordination Function (PCF) mode is defined to support time bounded traffic, such as VoIP in wireless LANs. The poll scheduling plays an important role in IEEE 802.11 PCF mode operation. This paper proposed a Multicast Polling Scheme to increase the performance of wireless LANs. Moreover, we proposed a polling schedule scheme for our proposed multipoll to serve real-time traffic. The results show that the proposed mechanism is more efficient than the original IEEE 802.11 PCF.

  • PDF

Digital Controller Candidate for Point-of-load Synchronous Buck Converter in Tri-mode Mechanism

  • Xiu, Li-Mei;Zhang, Wei-Ping;Li, Bo;Liu, Yuan-Sheng
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.796-805
    • /
    • 2014
  • A digital controller with a low-power approach for point-of-load synchronous buck converters is discussed and compared with its analog counterpart to confirm its feasibility for system integration. The tri-mode digital controller IC in $0.35{\mu}m$ CMOS process is presented to demonstrate solutions that include a PID, quarter PID, and robust RST compensators. These compensators address the steady-state, stand-by, and transient modes according to the system operating point. An idle-tone free condition for ${\Sigma}-{\Delta}$ DPWM reduces the inherent tone noise under DC-excitation. Compared with that of the traditional approach, this condition generates a quasi-pure modulation signal. Experimental results verify the closed-loop performances and confirm the power-saving mechanism of the proposed controller.

Rapid Dynamic Response Flyback AC-DC Converter Design

  • Chang, Changyuan;Wu, Menglin;He, Luyang;Zhao, Dadi
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1627-1633
    • /
    • 2018
  • A constant voltage AC-DC converter based on digital assistant technology is proposed in this paper, which has rapid dynamic response capability. The converter operates in the PFM (Pulse Frequency Modulation) mode. According to the load state, the compensation current produced by the digital compensation module was injected into the CS pin to adjust the switching pulse width dynamically and improve the dynamic response. The control chip is implemented based on NEC $1{\mu}m$ 5V/40V HVCMOS process. A 5V/1.2A prototype has been built to verify the proposed control method. When the load jumps from idle to heavy, the undershoot time is only 7.4ms.

A Study on Variable Speed Generation System with Energy Saving Function

  • Dugarjav, Bayasgalan;Lee, Sang-Ho;Han, Dong-Hwa;Lee, Young-Jin;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.137-143
    • /
    • 2013
  • This paper presents development of variable speed generation (VSG) system with energy saving function. The rubber tyred gantry crane (RTGC) requires the power from diesel-engine. Significant fuel savings by reducing the engine speed can be achieved, because all of operation modes except hoisting are required lower power than rated value of engine. When low speed operation output voltage of generator is decrease until acceptable range of motor driver inverters and auxiliary load supplier. According to power demand engine speed is varying from 20 to 60Hz, and voltage is varying between 210Vac and 480Vac. When idle mode or low power operation dc/dc converter operates by constant output voltage control and inverters dc site voltage is compensated by it. This paper proposed 3-phase interleaved boost converter which has the same structure as the commercially available 3-phase inverter and current sharing capability. 400kW interleaved converter is designed and a performance of converter is evaluated through several experiments with a RTGC system. Energy saving VSG system can cut down fuel consumption by 36% and 21.3% at idle and unidirectional load operations.