• Title/Summary/Keyword: identification function

Search Result 1,418, Processing Time 0.023 seconds

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

Parameter Identification of Induction Motors using Variable-weighted Cost Function of Genetic Algorithms

  • Megherbi, A.C.;Megherbi, H.;Benmahamed, K.;Aissaoui, A.G.;Tahour, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.597-605
    • /
    • 2010
  • This paper presents a contribution to parameter identification of a non-linear system using a new strategy to improve the genetic algorithm (GA) method. Since cost function plays an important role in GA-based parameter identification, we propose to improve the simple version of GA, where weights of the cost function are not taken as constant values, but varying along the procedure of parameter identification. This modified version of GA is applied to the induction motor (IM) as an example of nonlinear system. The GA cost function is the weighted sum of stator current and rotor speed errors between the plant and the model of induction motor. Simulation results show that the identification method based on improved GA is feasible and gives high precision.

Identification of ARMAX Model and Linear Estimation Algorithm for Structural Dynamic Characteristics Analysis (구조동특성해석을 위한 ARMAX 모형의 식별과 선형추정 알고리즘)

  • Choe, Eui-Jung;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.178-187
    • /
    • 1999
  • In order to identify a transfer function model with noise, penalty function method has been widely used. In this method, estimation process for possible model parameters from low to higher order proceeds the model identification process. In this study, based on linear estimation method, a new approach unifying the estimation and the identification of ARMAX model is proposed. For the parameter estimation of a transfer function model with noise, linear estimation method by noise separation is suggested instead of nonlinear estimation method. The feasibility of the proposed model identification and estimation method is verified through simulations, namely by applying the method to time series model. In the case of time series model with noise, the proposed method successfully identifies the transfer function model with noise without going through model parameter identification process in advance. A new algorithm effectively achieving model identification and parameter estimation in unified frame has been proposed. This approach is different from the conventional method used for identification of ARMAX model which needs separate parameter estimation and model identification processes. The consistency and the accuracy of the proposed method has been verified through simulations.

  • PDF

Identification of the Distribution Function of the Preisach Model using Inverse Algorithm

  • Koh, Chang-Seop;Ryu, Jae-Seop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.168-173
    • /
    • 2002
  • A new identification algorithm for the Preisach model is presented. The algorithm treats the identification procedure of the Preisach model as an inverse problem where the independent variables are parameters of the distribution function and the objective function is constructed using only the initial magnetization curve or only tile major loop of the hysteresis curve as well as the whole reversal curves. To parameterize the distribution function, the Bezier spline and Gaussian function are used for the coercive and interaction fields axes, respectively. The presented algorithm is applied to the ferrite permanent magnets, and the distribution functions are correctly found from the major loop of the hysteresis curve or the initial magnetization curve.

A Study on the Identification of Underdamped Process Control System (과소제동 공정제어시스템의 식별에 대한 연구)

  • Seo, Byeong-Seol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 1987
  • A new analytic method for the identification of process control system is presented. A second and a third order transfer function are considered as the estimated model function. For the second order transfer function, the new method is compared with the exisiting ones, simulation results show that the new method is superior to the existing ones. And also, In case of the third order transfer function which is difficult to analyze mathematically, system identification is tried.

  • PDF

A Frequency Response Function-Based Damage Identification Method for Cylindrical Shell Structures

  • Lee, U-Sik;Jeong, Won-Hee;Cho, Joo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2114-2124
    • /
    • 2004
  • In this paper, a structural damage identification method (SDIM) is developed for cylindrical shells and the numerically simulated damage identification tests are conducted to study the feasibility of the proposed SDIM. The SDIM is derived from the frequency response function solved from the structural dynamic equations of damaged cylindrical shells. A damage distribution function is used to represent the distribution and magnitudes of the local damages within a cylindrical shell. In contrast with most existing modal parameters-based SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in the damaged state. By virtue of utilizing FRF-data, one is able to make the inverse problem of damage identification well-posed by choosing as many sets of excitation frequency and FRF measurement point as needed to obtain a sufficient number of equations.

Performance Enhancement of Speaker Identification in Noisy Environments by Optimization Membership Function Based on Particle Swarm (Particle Swarm 기반 최적화 멤버쉽 함수에 의한 잡음 환경에서의 화자인식 성능향상)

  • Min, So-Hee;Song, Min-Gyu;Na, Seung-You;Kim, Jin-Young
    • Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.105-114
    • /
    • 2007
  • The performance of speaker identifier is severely degraded in noisy environments. A study suggested the concept of observation membership for enhancing performances of speaker identifier with noisy speech [1]. The method scaled observation probabilities of input speech by observation identification values decided by SNR. In the paper [1], the authors suggested heuristic parameter values for membership function. In this paper we attempt to apply particle swarm optimization (PSO) for obtaining the optimal parameters for speaker identification in noisy environments. With the speaker identification experiments using the ETRI database we prove that the optimization approach can yield better performance than using only the original membership function.

  • PDF

Output-only modal parameter identification for force-embedded acceleration data in the presence of harmonic and white noise excitations

  • Ku, C.J.;Tamura, Y.;Yoshida, A.;Miyake, K.;Chou, L.S.
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • Output-only modal parameter identification is based on the assumption that external forces on a linear structure are white noise. However, harmonic excitations are also often present in real structural vibrations. In particular, it has been realized that the use of forced acceleration responses without knowledge of external forces can pose a problem in the modal parameter identification, because an external force is imparted to its impulse acceleration response function. This paper provides a three-stage identification procedure as a solution to the problem of harmonic and white noise excitations in the acceleration responses of a linear dynamic system. This procedure combines the uses of the mode indicator function, the complex mode indication function, the enhanced frequency response function, an iterative rational fraction polynomial method and mode shape inspection for the correlation-related functions of the force-embedded acceleration responses. The procedure is verified via numerical simulation of a five-floor shear building and a two-dimensional frame and also applied to ambient vibration data of a large-span roof structure. Results show that the modal parameters of these dynamic systems can be satisfactorily identified under the requirement of wide separation between vibration modes and harmonic excitations.

An Identification Technique Based on Adaptive Radial Basis Function Network for an Electronic Odor Sensing System

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.151-155
    • /
    • 2011
  • A variety of pattern recognition algorithms including neural networks may be applicable to the identification of odors. In this paper, an identification technique for an electronic odor sensing system applicable to wound state monitoring is presented. The performance of the radial basis function(RBF) network is highly dependent on the choice of centers and widths in basis function. For the fine tuning of centers and widths, those parameters are initialized by an ill-conditioned genetic fuzzy c-means algorithm, and the distribution of input patterns in the very first stage, the stochastic gradient(SG), is adapted. The adaptive RBF network with singular value decomposition(SVD), which provides additional adaptation capabilities to the RBF network, is used to process data from array-based gas sensors for early detection of wound infection in burn patients. The primary results indicate that infected patients can be distinguished from uninfected patients.

High-throughput identification of chrysanthemum gene function and expression: An overview and an effective proposition

  • Nguyen, Toan Khac;Lim, Jin Hee
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Since whole-genome duplication (WGD) of diploid Chrysanthemum nankingense and de novo assembly whole-genome of C. seticuspe have been obtained, they have afforded to perceive the diversity evolution and gene discovery in the improved investigation of chrysanthemum breeding. The robust tools of high-throughput identification and analysis of gene function and expression produce their vast importance in chrysanthemum genomics. However, the gigantic genome size and heterozygosity are also mentioned as the major obstacles preventing the chrysanthemum breeding practices and functional genomics analysis. Nonetheless, some of technological contemporaries provide scientific efficient and promising solutions to diminish the drawbacks and investigate the high proficient methods for generous phenotyping data obtaining and system progress in future perspectives. This review provides valuable strategies for a broad overview about the high-throughput identification, and molecular analysis of gene function and expression in chrysanthemum. We also contribute the efficient proposition about specific protocols for considering chrysanthemum genes. In further perspective, the proper high-throughput identification will continue to advance rapidly and advertise the next generation in chrysanthemum breeding.