• Title/Summary/Keyword: identically distributed

Search Result 193, Processing Time 0.039 seconds

Performance Analysis of 2D-RAKE Receiver over Correlated Nakagami Fading Channel (상관도가 있는 나까가미 채널에서 2D-RAKE 수신기의 성능 분석)

  • Mun, Cheol;Kang, Chang-Hoon;Park, Han-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.635-639
    • /
    • 2000
  • The average bit error rate (BER) performance of 2D-RAKE receiver, operating in a correlated Nakagami fading channel, is analyzed. The analysis assumes correlated fading between the array elements with identical fading parameters but with unbalanced average signal-to-noise ratio (SNR). And independent but non-identically distributed frequency-selective fading channel with different fading parameters is assumed. The analyses show that fading correlation, delay profile, average SNR distribution, and fading parameters of combined branches affect the overall performance of 2D-RAKE receiver.

  • PDF

Effect of Bias on the Pearson Chi-squared Test for Two Population Homogeneity Test

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.241-245
    • /
    • 2012
  • Categorical data collected based on complex sample design is not proper for the standard Pearson multinomial-based chi-squared test because the observations are not independent and identically distributed. This study investigates effects of bias of point estimator of population proportion and its variance estimator to the standard Pearson chi-squared test statistics when the sample is collected based on complex sampling scheme. This study examines the effect under two population homogeneity test. The standard Pearson test statistic can be partitioned into two parts; the first part is the weighted sum of ${\chi}^2_1$ with eigenvalues of design matrix as their weights, and the additional second part which is added due to the biases of the point estimator and its variance estimator. Our empirical analysis shows that even though the bias of point estimator is small, Pearson test statistic is very much inflated due to underestimate the variance of point estimator. In the connection of design-based variance estimator and its design matrix, the bigger the average of eigenvalues of design matrix is, the larger relative size of which the first component part to Pearson test statistic is taking.

Statistical comparison of morphological dilation with its equivalent linear shift-invariant system:case of memoryless uniform soruces (무기억 균일 신호원에 대한 수리 형태론적인 불림과 등가 시스템의 통계적 비교)

  • 김주명;최상신;최태영
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.79-93
    • /
    • 1997
  • This paper presents a linear shift-invariant system euqivalent to morphological dilation for a memoryless uniform source in the sense of the power spectral density function, and comares it with dialtion. This equivalent LSI system is found through spectral decomposition and, for dilation and with windwo size L, it is shown to be a finite impulse response filter composed of L-1 delays, L multipliers and three adders. Th ecoefficients of the equivalent systems are tabulated. The comparisons of dilation and its equivalent LSI system show that probability density functions of the output sequences of the two systems are quite different. In particular, the probability density functon from dilation of an independent and identically distributed uniform source over the unit interval (0, 1) shows heavy probability in around 1, while that from the equivalent LSI system shows probability concentration around themean vlaue and symmetricity about it. This difference is due to the fact that dilation is a non-linear process while the equivalent system is linear and shift-ivariant. In the case that dikation is fabored over LSI filters in subjective perforance tests, one of the factors can be traced to this difference in the probability distribution.

  • PDF

Evaluation of Internal Structure and Morphology of Poly(benzyl ether) Dendrimers by Molecular Dynamics Simulations

  • Hong, Taewan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.178-188
    • /
    • 2004
  • We performed molecular dynamics (MD) simulations at 300 K on a series of poly(benzyl ether) (PBE) dendrimers having a different core functionalities. We used the rotational isomeric state Metropolis Monte Carlo (RMMC) method to construct the initial configuration in a periodic boundary cell (PBC) before the MD simulations were undertaken. To elucidate the effects that the structural features have on the chain dimension, the overall internal structure, and the morphology, we monitored the radii of gyration, R$\sub$g/ and the conformational changes during the simulations. The PBE dendrimers in a glassy state adopted less-extended structures when compared with the conformations obtained from the RMMC calculations. We found that R$\sub$g/ of the PBE dendrimer depends on the molecular weight, M, according to the relation, R$\sub$g/∼M$\^$0.22/. The radial distributions of the dendrimers were developed identically in the PBC, irrespective of the core functionality. A gradual decrease in radial density resulted from the fact that the terminal branch ends are distributed all over the molecule, except for the core region.

Performance of Dynamic Spectrum Access Scheme Using Embedded Markov Chain (임베디드 마르코프 체인을 이용한 동적 스펙트럼 접속 방식의 성능 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2036-2040
    • /
    • 2013
  • In this paper, we consider two dynamic spectrum access schemes in cognitive network with two independent and identically distributed channels. Under the first scheme, secondary users switch channel only after transmission failure. On the other hand, under the second one, they switch channel only after successful transmission. We develop a mathematical model to investigate the performance of the second one and analyze the model using 3-dimensional embedded Markov chain. Numerical results and simulations are presented to compare between the two schemes.

Complete Moment Convergence of Moving Average Processes Generated by Negatively Associated Sequences

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.507-513
    • /
    • 2010
  • Let {$X_i,-{\infty}$ < 1 < $\infty$} be a doubly infinite sequence of identically distributed and negatively associated random variables with mean zero and finite variance and {$a_i,\;-{\infty}$ < i < ${\infty}$} be an absolutely summable sequence of real numbers. Define a moving average process as $Y_n={\sum}_{i=-\infty}^{\infty}a_{i+n}X_i$, n $\geq$ 1 and $S_n=Y_1+{\cdots}+Y_n$. In this paper we prove that E|$X_1$|$^rh$($|X_1|^p$) < $\infty$ implies ${\sum}_{n=1}^{\infty}n^{r/p-2-q/p}h(n)E{max_{1{\leq}k{\leq}n}|S_k|-{\epsilon}n^{1/p}}{_+^q}<{\infty}$ and ${\sum}_{n=1}^{\infty}n^{r/p-2}h(n)E{sup_{k{\leq}n}|k^{-1/p}S_k|-{\epsilon}}{_+^q}<{\infty}$ for all ${\epsilon}$ > 0 and all q > 0, where h(x) > 0 (x > 0) is a slowly varying function, 1 ${\leq}$ p < 2 and r > 1 + p/2.

Diversity-Multiplexing Tradeoff Analysis of Wireless Multiple-Antenna Cooperative Systems in General Fading Channels

  • Xu, Kun;Gao, Yuanyuan;Yi, Xiaoxin;Zhang, Yajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.3026-3045
    • /
    • 2012
  • In this paper, diversity-multiplexing tradeoff (DMT) of three-user wireless multiple-antenna cooperative systems is investigated in general fading channels when half-duplex and decode-and-forward relay is employed. Three protocols, i.e., adaptive protocol, receive diversity protocol, and dual-hop relaying protocol, are considered. The general fading channels may include transmit and/or receive correlation and nonzero channel means, and are extensions of independent and identically distributed Rayleigh or Rician fading channels. Firstly, simple DMT expressions are derived for general fading channels with zero channel means and no correlation when users employ arbitrary number of antennas. Explicit DMT expressions are also obtained when all users employ the same number of antennas and the channels between any two users are of the same fading statistics. Finally, the impact of nonzero channel means and/or correlation on DMT is evaluated. It is revealed theoretically that the DMTs depend on the number of antennas at each user, channel means (except for Rayleigh and Rician fading statistics), transmit and/or receive correlation, and the polynomial behavior near zero of the channel gain probability density function. Examples are also provided to illustrate the analysis and results.

MARCINKIEWICZ-TYPE LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS

  • Hong, Dug-Hun;Volodin, Andrei I.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1133-1143
    • /
    • 1999
  • Chaterji strengthened version of a theorem for martin-gales which is a generalization of a theorem of Marcinkiewicz proving that if $X_n$ is a sequence of independent, identically distributed random variables with $E{\mid}X_n{\mid}^p\;<\;{\infty}$, 0 < P < 2 and $EX_1\;=\;1{\leq}\;p\;<\;2$ then $n^{-1/p}{\sum^n}_{i=1}X_i\;\rightarrow\;0$ a,s, and in $L^p$. In this paper, we probe a version of law of large numbers for double arrays. If ${X_{ij}}$ is a double sequence of random variables with $E{\mid}X_{11}\mid^log^+\mid X_{11}\mid^p\;<\infty$, 0 < P <2, then $lim_{m{\vee}n{\rightarrow}\infty}\frac{{\sum^m}_{i=1}{\sum^n}_{j=1}(X_{ij-a_{ij}}}{(mn)^\frac{1}{p}}\;=0$ a.s. and in $L^p$, where $a_{ij}$ = 0 if 0 < p < 1, and $a_{ij}\;=\;E[X_{ij}\midF_[ij}]$ if $1{\leq}p{\leq}2$, which is a generalization of Etemadi's marcinkiewicz-type SLLN for double arrays. this also generalize earlier results of Smythe, and Gut for double arrays of i.i.d. r.v's.

  • PDF

CHARACTERIZATIONS OF BETA DISTRIBUTION OF THE FIRST KIND BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.441-446
    • /
    • 2003
  • Let { $X_{n}$ , n $\geq$ 1} be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function f(x). Let $Y_{n}$ = max{ $X_1$, $X_2$, …, $X_{n}$ } for n $\geq$ 1. We say $X_{j}$ is an upper record value of { $X_{n}$ , n$\geq$1} if $Y_{j}$ > $Y_{j-1}$, j > 1. The indices at which the upper record values occur are given by the record times {u(n)}, n$\geq$1, where u(n) = min{j|j>u(n-1), $X_{j}$ > $X_{u}$ (n-1), n$\geq$2} and u(1) = 1. We call the random variable X $\in$ Beta (1, c) if the corresponding probability cumulative function F(x) of x is of the form F(x) = 1-(1-x)$^{c}$ , c>0, 0$\leq$x$\leq$1. In this paper, we will give a characterization of the beta distribution of the first kind by considering conditional expectations of record values.s.

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE EXPONENTIAL DISTRIBUTION BY RECORD VALUES

  • LEE, MIN-YOUNG;CHANG, SE-KYUNG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the exponential distribution. Let $\{X_n,\;n{\geq}1\}$ be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function(pdf) f(x). Let $Y_n=max\{X_1,\;X_2,\;{\cdots},\;X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of $\{X_n,\;n{\geq}1\}$, if $Y_j>Y_{j-1}$, j > 1. The indices at which the upper record values occur are given by the record times {u(n)}, $n{\geq}1$, where u(n)=min\{j{\mid}j>u(n-1),\;X_j>X_{u(n-1)},\;n{\geq}2\} and u(1) = 1. Suppose $X{\in}Exp(1)$. Then $\Large{E\;\left.{\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}}\right)=\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n)}}}\right)}$ and $\Large{E\;\left.{\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}}\right)=\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m-1)}}{X^s_{u(n-1)}}}\right)}$.

  • PDF