• 제목/요약/키워드: idealized models

검색결과 102건 처리시간 0.023초

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Application of welding simulation to block joints in shipbuilding and assessment of welding-induced residual stresses and distortions

  • Fricke, Wolfgang;Zacke, Sonja
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.459-470
    • /
    • 2014
  • During ship design, welding-induced distortions are roughly estimated as a function of the size of the component as well as the welding process and residual stresses are assumed to be locally in the range of the yield stress. Existing welding simulation methods are very complex and time-consuming and therefore not applicable to large structures like ships. Simplified methods for the estimation of welding effects were and still are subject of several research projects, but mostly concerning smaller structures. The main goal of this paper is the application of a multi-layer welding simulation to the block joint of a ship structure. When welding block joints, high constraints occur due to the ship structure which are assumed to result in accordingly high residual stresses. Constraints measured during construction were realized in a test plant for small-scale welding specimens in order to investigate their and other effects on the residual stresses. Associated welding simulations were successfully performed with fine-mesh finite element models. Further analyses showed that a courser mesh was also able to reproduce the welding-induced reaction forces and hence the residual stresses after some calibration. Based on the coarse modeling it was possible to perform the welding simulation at a block joint in order to investigate the influence of the resulting residual stresses on the behavior of the real structure, showing quite interesting stress distributions. Finally it is discussed whether smaller and idealized models of definite areas of the block joint can be used to achieve the same results offering possibilities to consider residual stresses in the design process.

Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests

  • Zarnani, Saman;El-Emam, Magdi M.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • 제3권4호
    • /
    • pp.291-321
    • /
    • 2011
  • The paper describes a simple numerical FLAC model that was developed to simulate the dynamic response of two instrumented reduced-scale model reinforced soil walls constructed on a 1-g shaking table. The models were 1 m high by 1.4 m wide by 2.4 m long and were constructed with a uniform size sand backfill, a polymeric geogrid reinforcement material with appropriately scaled stiffness, and a structural full-height rigid panel facing. The wall toe was constructed to simulate a perfectly hinged toe (i.e. toe allowed to rotate only) in one model and an idealized sliding toe (i.e. toe allowed to rotate and slide horizontally) in the other. Physical and numerical models were subjected to the same stepped amplitude sinusoidal base acceleration record. The material properties of the component materials (e.g. backfill and reinforcement) were determined from independent laboratory testing (reinforcement) and by back-fitting results of a numerical FLAC model for direct shear box testing to the corresponding physical test results. A simple elastic-plastic model with Mohr-Coulomb failure criterion for the sand was judged to give satisfactory agreement with measured wall results. The numerical results are also compared to closed-form solutions for reinforcement loads. In most cases predicted and closed-form solutions fall within the accuracy of measured loads based on ${\pm}1$ standard deviation applied to physical measurements. The paper summarizes important lessons learned and implications to the seismic design and performance of geosynthetic reinforced soil walls.

싸락눈 종단 속도의 불확실성이 구름 모의에 미치는 영향 (Effects of Uncertainty in Graupel Terminal Velocity on Cloud Simulation)

  • 이현호;백종진
    • 대기
    • /
    • 제26권3호
    • /
    • pp.435-444
    • /
    • 2016
  • In spite of considerable progress in the recent decades, there still remain large uncertainties in numerical cloud models. In this study, effects of uncertainty in terminal velocity of graupel on cloud simulation are investigated. For this, a two-dimensional bin microphysics cloud model is employed, and deep convective clouds are simulated under idealized environmental conditions. In the sensitivity experiments, the terminal velocity of graupel is changed to twice and half the velocity in the control experiment. In the experiment with fast graupel terminal velocity, a large amount of graupel mass is present in the lower layer. On the other hand, in the experiment with slow graupel terminal velocity, almost all graupel mass remains in the upper layer. The graupel size distribution exhibits that as graupel terminal velocity increases, in the lower layer, the number of graupel particles increases and the peak radius in the graupel mass size distribution decreases. In the experiment with fast graupel terminal velocity, the vertical velocity is decreased mainly due to a decrease in riming that leads to a decrease in latent heat release and an increase in evaporative cooling via evaporation, sublimation, and melting that leads to more stable atmosphere. This decrease in vertical velocity causes graupel particles to fall toward the ground easier. By the changes in graupel terminal velocity, the accumulated surface precipitation amount differs up to about two times. This study reveals that the terminal velocity of graupel should be estimated more accurately than it is now.

OPTIMUM STORAGE REALLOCATION AND GATE OPERATION IN MULTIPURPOSE RESERVOIRS

  • Hamid Moradkhani
    • Water Engineering Research
    • /
    • 제3권1호
    • /
    • pp.57-62
    • /
    • 2002
  • This research is intended to integrate long-term operation rules and real time operation policy for conservation & flood control in a reservoir. The familiar Yield model has been modified and used to provide long-term rule curves. The model employs linear programming technique under given physical conditions, i.e., total capacity, dead storage, spillways, outlet capacity and their respective elevations to find required and desired minimum storage fur different demands. To investigate the system behavior resulting from the above-mentioned operating policy, i.e., the rule curves, the simulation model was used. Results of the simulation model show that the results of the optimization model are indeed valid. After confirmation of the above mentioned rule curves by the simulation models, gate operation procedure was merged with the long term operation rules to determine the optimum reservoir operating policy. In the gate operation procedure, operating policy in downstream flood plain, i.e., determination of damaging and non-damaging discharges in flood plain, peak floods, which could be routed by reservoir, are determined. Also outflow hydrograph and variations of water surface levels for two known hydrographs are determined. To examine efficiency of the above-mentioned models and their ability in determining the optimum operation policy, Esteghlal reservoir in Iran was analyzed as a case study. A numerical model fur the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF

다중스파 날개의 유한요소 이상화 방법에 관한 인자연구 (Parametric Study on the Finite Element Idealization Method for Multi-Spar WIng)

  • 권진희;강경국;박찬우;김승호
    • 한국항공우주학회지
    • /
    • 제30권6호
    • /
    • pp.107-115
    • /
    • 2002
  • 본 연구에서는 다중스파 항공기 날개 구조물의 유한요소 이상화 방법이 날개의 내력분포, 치수 및 중량에 어떠한 영향을 미치는지를 살펴보았다. 구조물의 유한요소 이상화 방법에 따라 총 18가지의 날개 모델을 구축하고 4가지의 외부하중 조건을 적용하였다. MSC/NASTRAN과 MSC/PATRAN을 이용하여 모든 구조물이 주어진 하중조건 모두에 대해 허용치 이내의 응력과, 가공을 위한 최소치 이상의 치수를 가지도록 하는 알고리즘을 별도로 개발하였다. 해석결과 날개의 내력분포와 예상중략에 가장 큰 영향을 미치는 것은 외피이고, 스파나 립의 이상화 방법의 효과는 상대적으로 작은 것으로 나타났다. 일반적인 예상과는 달리 굽힘강성을 가진 요소들을 사용한 모델이, 굽힘응력의 효과로 인해, 굽힘강성이 없는 요소를 사용한 모델에 비해 더 큰 예상중량을 보이는 것을 알 수 있었다. 본 연구의 결과로부터, 설계자는 가능하면 모든 구조물의 굽힘강성을 고려한 해석을 수행하거나 그렇지 못할 경우 각 구조물의 특성에 대한 신중한 사전 검토를 거칠 것을 권장한다.

Tension Leg Platform의 Tether의 동적해석 (Dynamic Analysis of Tethers of Tension Leg Platforms)

  • 편종근;박우선;김규한
    • 대한토목학회논문집
    • /
    • 제7권4호
    • /
    • pp.73-81
    • /
    • 1987
  • 본 논문에서는 파랑하중에 대한 Tension Leg Platform(TLP)의 tether와 platform의 동적거동해석에 대해서 연구하였다. tether의 동특성 효과를 적절하고도 간단히 고려할 수 있는 platform 해석모델을 제안하여 platform 운동해석을 수행하였으며, tether에 작용하여 인장력에 기인된 기하학적 강성을 고려한 유한요소법을 사용하여 tether의 거동을 해석하였다. 해석 예제용구조물로는 설치수심이 1000ft 및 3000ft인 두 가상적인 TLP를 선택하였으며, 비교를 목적으로 tether의 동특성 효과를 고려하지 않은 기존모델 및 platform과 tether를 조합한 모델 등에 의한 해석도 수행하여, 그 결과를 본 연구에서 제안한 모델에 의한 platform 운동과 tether의 거동 해석결과와 비교분석하였다. 아울러, tether의 통상적인 휨강성 및 tether에 작용하는 파랑하중이 tether의 거동에 미치는 영향정도도 고찰하였다.

  • PDF

비구형 빙정의 단일산란 특성 계산: 물리적으로 일관된 구름 미세물리와 복사를 향하여 (Calculations of the Single-Scattering Properties of Non-Spherical Ice Crystals: Toward Physically Consistent Cloud Microphysics and Radiation)

  • 엄준식;장성현;김정규;박성민;정희정;한수지;이윤서
    • 대기
    • /
    • 제31권1호
    • /
    • pp.113-141
    • /
    • 2021
  • The impacts of ice clouds on the energy budget of the Earth and their representation in climate models have been identified as important and unsolved problems. Ice clouds consist almost exclusively of non-spherical ice crystals with various shapes and sizes. To determine the influences of ice clouds on solar and infrared radiation as required for remote sensing retrievals and numerical models, knowledge of scattering and microphysical properties of ice crystals is required. A conventional method for representing the radiative properties of ice clouds in satellite retrieval algorithms and numerical models is to combine measured microphysical properties of ice crystals from field campaigns and pre-calculated single-scattering libraries of different shapes and sizes of ice crystals, which depend heavily on microphysical and scattering properties of ice crystals. However, large discrepancies between theoretical calculations and observations of the radiative properties of ice clouds have been reported. Electron microscopy images of ice crystals grown in laboratories and captured by balloons show varying degrees of complex morphologies in sub-micron (e.g., surface roughness) and super-micron (e.g., inhomogeneous internal and external structures) scales that may cause these discrepancies. In this study, the current idealized models representing morphologies of ice crystals and the corresponding numerical methods (e.g., geometric optics, discrete dipole approximation, T-matrix, etc.) to calculate the single-scattering properties of ice crystals are reviewed. Current problems and difficulties in the calculations of the single-scattering properties of atmospheric ice crystals are addressed in terms of cloud microphysics. Future directions to develop physically consistent ice-crystal models are also discussed.

필로티 구조를 가진 저층 철근콘크리트 전단벽식 건물의 요구내력 스펙트럼 (Required Strength Spectrum of Low-Rise Reinforced Concrete Shear Wall Buildings with Pilotis)

  • 이강석;오재근
    • 한국지진공학회논문집
    • /
    • 제11권5호
    • /
    • pp.61-69
    • /
    • 2007
  • 본 연구의 목적은 하부층에 필로티 구조, 상부층에 전단벽식구조를 가진 저층 철근콘크리트 건물의 내진설계 및 내진성능 평가를 위한 기본적인 자료를 제공하는 것으로서, 비선형 지진응답해석을 실시하여 각 층의 내력과 연성율 사이의 상관관계를 파악하여, 이것들의 비율이 건물 전체의 내진성능에 어떻게 영향을 미치는가를 검토하였다. 본 연구에서는 필로티 구조를 가진 저층 철근콘크리트 전단벽식 건물의 특성을 2질점계로 치환하였으며, 하부층인 필로티 구조는 휨파괴형으로 상부층인 전단벽식 구조는 전단파괴형 시스템으로 각각 모델링하였다. 또한 각층의 복원력 특성으로는 필로티 구조는 Degrading Trilinear Model(휨파괴형), 상부층은 Origin Oriented Model(전단파괴형)을 선정하였다. 상기 복원력 특성은 각 층의 보유내력에 의하여 변화를 하며, 지진응답해석용 입력지진파로는 8개의 피해지진의 가속도 성분을 선정하여 이들 가속도 성분의 최대가속도를 0.1g, 0.2g, 0.3g로 표준화 하였다. 각각 지진강도수준에 따라 지진 응답해석을 실시하여 하부층 필로티 구조와 상부층 전단벽식 구조의 내력비와 응답 연성율 사이의 상관관계를 파악하였다. 최종적으로 특정 연성율을 위한 필로티 구조를 가진 저층 철근콘크리트 전단벽식 건물의 요구내력을 산정하여 요구내력 스펙트럼(Required Strength Spectrum)을 제안하였다. 본 연구에서 제안한 요구내력스펙트럼은 특정 지역에서 요구하는 지진수준에 대하여 지진발생시 특정 연성율 이내로 머물게 하는 하한내력의 범위를 파악할 수 있는 등, 연구결과는 필로티 구조를 가진 철근콘크리트 전단벽식 건물의 내진성능평가 및 내진설계의 기본적인 자료로서 활용 가능하다고 사료된다.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.