Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.1.113

Calculations of the Single-Scattering Properties of Non-Spherical Ice Crystals: Toward Physically Consistent Cloud Microphysics and Radiation  

Um, Junshik (Department of Atmospheric Sciences, Pusan National University)
Jang, Seonghyeon (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University)
Kim, Jeonggyu (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University)
Park, Sungmin (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University)
Jung, Heejung (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University)
Han, Suji (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University)
Lee, Yunseo (Department of Atmospheric Sciences, Pusan National University)
Publication Information
Atmosphere / v.31, no.1, 2021 , pp. 113-141 More about this Journal
Abstract
The impacts of ice clouds on the energy budget of the Earth and their representation in climate models have been identified as important and unsolved problems. Ice clouds consist almost exclusively of non-spherical ice crystals with various shapes and sizes. To determine the influences of ice clouds on solar and infrared radiation as required for remote sensing retrievals and numerical models, knowledge of scattering and microphysical properties of ice crystals is required. A conventional method for representing the radiative properties of ice clouds in satellite retrieval algorithms and numerical models is to combine measured microphysical properties of ice crystals from field campaigns and pre-calculated single-scattering libraries of different shapes and sizes of ice crystals, which depend heavily on microphysical and scattering properties of ice crystals. However, large discrepancies between theoretical calculations and observations of the radiative properties of ice clouds have been reported. Electron microscopy images of ice crystals grown in laboratories and captured by balloons show varying degrees of complex morphologies in sub-micron (e.g., surface roughness) and super-micron (e.g., inhomogeneous internal and external structures) scales that may cause these discrepancies. In this study, the current idealized models representing morphologies of ice crystals and the corresponding numerical methods (e.g., geometric optics, discrete dipole approximation, T-matrix, etc.) to calculate the single-scattering properties of ice crystals are reviewed. Current problems and difficulties in the calculations of the single-scattering properties of atmospheric ice crystals are addressed in terms of cloud microphysics. Future directions to develop physically consistent ice-crystal models are also discussed.
Keywords
Light scattering; microphysics; nonspherical ice crystals; discrete dipole approximation; geometric optics method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang, P., G. Hong, G. W. Kattawar, P. Minnis, and Y. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II-Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sensing, 46, 1948-1957.   DOI
2 Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 ㎛. J. Atmos. Sci., 70, 330-347, doi:10.1175/JAS-D-12-039.1.   DOI
3 Jarvinen, E., and Coauthors, 2018: Additional global climate cooling by clouds due to ice crystal complexity. Atmos. Chem. Phys., 18, 15767-15781, doi:10.5194/acp-18-15767-2018.   DOI
4 Jourdan, O., G. Mioche, T. J. Garrett, A. Schwarzenbock, J. Vidot, Y. Xie, V. Shcherbakov, P. Yang, and J.-F. Gayet, 2010: Coupling of the microphysical and optical properties of an Arctic nimbostratus cloud during the ASTAR 2004 experiment: Implications for light-scattering modeling. J. Geophys. Res. Atmos., 115, D23206, doi:10.1029/2010JD014016.   DOI
5 Kahnert, M., 2003: Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transfer, 79, 775-824.   DOI
6 Kahnert, M., 2010: Electromagnetic scattering by nonspherical particles: recent advances. J. Quant. Spectrosc. Radiat. Transfer, 111, 1788-1790, doi:10.1016/j.jqsrt.2009.12.007.   DOI
7 Edwards, J. M., S. Havemann, J.-C. Thelen, and A. J. Baran, 2007: A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 19-35.   DOI
8 White, R. E., 1985: An introduction to the finite element method with applications to nonlinear problems. Wiley-Interscience, 354 pp.
9 Wriedt, T., 1998: A Review of Elastic Light Scattering Theories. Part. Part. Syst. Charact., 15, 67-74.   DOI
10 Wu, Y., T. Cheng, L. Zheng, and H. Chen, 2016: Optical properties of the semi-external mixture composed of sulfate particle and different quantities of soot aggregates. J. Quant. Spectrosc. Radiat. Transfer, 179, 139-148, doi:10.1016/j.jqsrt.2016.03.012.   DOI
11 Xie, Y., P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, 2009: Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size. J. Geophys. Res. Atmos., 114, D11203.   DOI
12 Senf, F., and H. Deneke, 2017: Uncertainties in synthetic Meteosat SEVIRI infrared brightness temperatures in the presence of cirrus clouds and implications for evaluation of cloud microphysics. Atmos. Res., 183, 113-129, doi:10.1016/j.atmosres.2016.08.012.   DOI
13 Shabaninezhad, M., M. G. Awan, and G. Ramakrishna, 2021: MATLAB package for discrete dipole approximation by graphics processing unit: Fast Fourier Transform and Biconjugate Gradient. J. Quant. Spectrosc. Radiat. Transfer, 262, 107501, doi:10.1016/j.jqsrt.2020.107501.   DOI
14 Nousiainen, T., H. Lindqvist, G. M. McFarquhar, and J. Um, 2011: Small irregular ice crystals in tropical cirrus. J. Atmos. Sci., 68, 2614-2627, doi:10.1175/2011JAS3733.1.   DOI
15 Oguchi, T., 1973: Scattering properties of oblate raindrops and cross polarization of radio waves due to rain-calculations at 19.3 and 34.8 GHz. J. Radio. Res. Lab. Jpn., 20, 79-118.
16 Lawson, R. P., and Coauthors, 2019: A review of ice particle shapes in cirrus formed in situ and in anvils. J. Geophys. Res. Atmos., 124, 10049-10090, doi:10.1029/2018JD030122.   DOI
17 Leinonen, J., S. Kneifel, and R. J. Hogan, 2017: Evaluation of the Rayleigh-Gans approximation for microwave scattering by rimed snowflakes. Q. J. R. Meteorol. Soc., 144, 77-88, doi:10.1002/qj.3093.   DOI
18 Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 583 pp.
19 Liou, K. N., and P. Yang, 2016: Light Scattering by Ice Crystals: Fundamentals and Applications. Cambridge University Press, 460 pp, doi:10.1017/CBO9781139030052.   DOI
20 Zhao, Y., and L. Ma, 2009: Assessment of two fractal scattering models for the prediction of the optical characteristics of soot aggregates. J. Quant. Spectrosc. Radiat. Transfer, 110, 315-322.   DOI
21 Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, and Y. Hu, 2011: Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds. Appl. Opt., 50, 1065-1081, doi:10.1364/AO.50.001065.   DOI
22 Yang, P., and K. N. Liou, 1995: Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models. J. Opt. Soc. Am. A, 12, 162-176.   DOI
23 Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Am. A, 13, 2072-2085.   DOI
24 Yang, P., and K. N. Liou, 1996b: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35, 6568-6584.   DOI
25 Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm. J. Opt. Soc. Am. A, 14, 2278-2289.   DOI
26 Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contr. Atmos. Phys., 71, 223-248.
27 Yang, P., and K. N. Liou, 2006: Light scattering and absorption by nonspherical ice crystals. In A. A. Kokhanovsky et al. Eds., Light Scattering Reviews. Springer, 31-71.
28 Yang, P., J. Ding, R. L. Panetta, K. Liou, G. W. Kattawar, and M. Mishchenko, 2019: On the convergence of numerical computations for both exact and approximate solutions for electromagnetic scattering by nonspherical dielectric particles. Pr. Electromagn. Res., 164, 27-61, doi:10.2528/PIER18112810.   DOI
29 Febvre, G., and Coauthors, 2009: On optical and microphysical characteristics of contrails and cirrus. J. Geophys. Res. Atmos., 114, D02204.   DOI
30 Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Q. J. R. Meteorol. Soc., 114, 145-164.   DOI
31 Francis, P. N., J. S. Foot, and A. J. Baran, 1999: Aircraft measurements of the solar and infrared radiative properties of cirrus and their dependence on ice crystal shape. J. Geophys. Res. Atmos., 104, 31685-31695.   DOI
32 Frigo, M., and S. G. Johnson, 2005: The design and implementation of FFTW3. Proc. IEEE, 93, 216-231.   DOI
33 Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 2058-2082.   DOI
34 Hess, M., R. B. A. Koelemeijer, and P. Stammes, 1998: Scattering matrices of imperfect hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 60, 301-308.   DOI
35 Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 1239-1260.   DOI
36 Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 45-69, doi:10.1016/j.atmosres.2012.04.010.   DOI
37 Auriol, F., J.-F. Gayet, G. Febvre, O. Jourdan, L. Labonnote, and G. Brogniez, 2001: In situ observation of cirrus scattering phase functions with 22° and 46° halos: cloud field study on 19 February 1998. J. Atmos. Sci., 58, 3376-3390.   DOI
38 Bailey, M., and J. Hallett, 2004: Growth rates and habits of ice crystals between -20° and -70℃. J. Atmos. Sci., 61, 514-544.   DOI
39 Baran, A. J., and L.-C. Labonnote, 2007: A self-consistent scattering model for cirrus. I: The solar region. Q. J. R. Meteorol. Soc., 133, 1899-1912.   DOI
40 Baran, A. J., P. D. Watts, and P. N. Francis, 1999: Testing the coherence of cirrus microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements. J. Geophys. Res., 104, 31673-31683.   DOI
41 Baran, A. J., P. N. Francis, L.-C. Labonnote, and M. Doutriux-Boucher, 2001: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus. Q. J. R. Meteorol. Soc., 127, 2395-2416.   DOI
42 Baran, A. J., V. N. Shcherbakov, B. A. Barker, J. F. Gayet, and R. P. Lawson, 2005: On the scattering phase-function of non-symmetric ice-crystals. Q. J. R. Meteorol. Soc., 131, 2609-2616.   DOI
43 Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013a: Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transfer, 116, 169-183.   DOI
44 Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013b: A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders. J. Quant. Spectrosc. Radiat. Transfer, 123, 17-22, doi:10.1016/j.jqsrt.2012.11.033.   DOI
45 Bohren, C. F., and D. R. Huffman, 1983: Absorption and scattering of light by small particles. Wiley, 544 pp.
46 Cai, Q., and K.-N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: theory. Appl. Opt., 21, 3569-3580.   DOI
47 Chen, G., P. Yang, and G. W. Kattawar, 2008: Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles. J. Opt. Soc. Am. A, 25, 785-790.
48 Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324.   DOI
49 Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: Tmatrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535-575.   DOI
50 Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, 2000: Light Scattering by Nonspherical Particles. Academic Press, 690 pp.
51 Hogan, R. J., and C. D. Westbrook, 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh-Gans approximation. J. Atmos. Sci., 71, 3292-3301, doi:10.1175/JAS-D-13-0347.1.   DOI
52 Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteorol. Clim., 51, 655-671, doi:10.1175/JAMC-D-11-074.1.   DOI
53 Hogan, R. J., R. Honeyager, J. Tyynela, and S. Kneifel, 2017: Calculating the millimetre-wave scattering phase function of snowflakes using the self-similar Rayleigh-Gans Approximation. Q. J. R. Meteorol. Soc., 143, 834-844, doi:10.1002/qj.2968.   DOI
54 Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, and K.-M. Xu, 2009: Parameterization of shortwave and longwave radiative properties of ice clouds for use in climate models. J. Climate, 22, 6287-6312.   DOI
55 Hu, S., L. Liu, T. Gao, and Q. Zeng, 2019: Design and validation of the invariant imbedded T-Matrix scattering model for atmospheric particles with arbitrary shapes. Appl. Sci., 9, 4423, doi:10.3390/app9204423.   DOI
56 Iaquinta, J., H. Isaka, and P. Personne, 1995: Scattering phase function of bullet rosette ice crystals. J. Atmos. Sci., 52, 1401-1413.   DOI
57 Ishimoto, H., K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, 2012: Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds. J. Quant. Spectrosc. Radiat. Transfer, 113, 632-643, doi:10.1016/j.jqsrt.2012.01.017.   DOI
58 Jackson, J. D., 1998: Classical electrodynamics, 3rd ed.. Wiley, 832 pp.
59 Yang, P., S. Hioki, M. Saito, C.-P Kuo, B. A. Baum, and K.-N. Liou, 2018: A review of ice cloud optical property models for passive satellite remote sensing. Atmosphere, 9, 499, doi:10.3390/atmos9120499.   DOI
60 Um, J., and G. M. McFarquhar, 2015: Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: Impacts of aspect ratio and ice crystal size. J. Quant. Spectrosc. Radiat. Transfer, 165, 134-152, doi:10.1016/j.jqsrt.2015.07.001.   DOI
61 Um, J., and Coauthors, 2018: Microphysical characteristics of frozen droplet aggregates from deep convective clouds. Atmos. Chem. Phys., 18, 16915-16930, doi:10.5194/acp-18-16915-2018.   DOI
62 van de Hulst, H. C., 1981: Light scattering by small particles. Dover Publications, Mineola, N. Y., 470 pp.
63 Chylek, P., and J. D. Klett, 1991: Extinction cross sections of nonspherical particles in the anomalous diffraction approximation. J. Opt. Soc. Am. A, 8, 274-281.   DOI
64 C.-Labonnote, L., G. Brogniez, J.-C. Buriez, M. Doutriaux-Boucher, J.-F. Gayet, and A. Macke, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res. Atmos., 106, 12139-12153.   DOI
65 Cole, B. H., P. Yang, B. A. Baum, J. Riedi, and L. C.-Labonnote, 2014: Ice particle habit and surface roughness derived from PARASOL polarization measurements. Atmos. Chem. Phys., 14, 3739-3750, doi:10.5194/acp-14-3739-2014.   DOI
66 Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge university press, 445 pp.
67 Mishchenko, M. I., and Coauthors, 2016: First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media. Phys. Rep., 632, 1-75, doi:10.1016/j.physrep.2016.04.002.   DOI
68 Muinonen, K., 1989: Scattering of light by crystals: A modified Kirchhoff approximation. Appl. Opt., 28, 3044-3050.   DOI
69 Muinonen, K., K. Lumme, J. Peltoniemi, and W. M. Irvine, 1989: Light scattering by randomly oriented crystals. Appl. Opt., 28, 3051-3060.   DOI
70 Liu, C., X. Xu, Y. Yin, M. Schnaiter, and Y. L. Yung, 2019: Black carbon aggregates: A database for optical properties. J. Quant. Spectrosc. Radiat. Transfer, 222, 170-179, doi:10.1016/j.jqsrt.2018.10.021.   DOI
71 Liu, L., and M. I. Mishchenko, 2007: Scattering and radiative properties of complex soot and soot-containing aggregate particles. J. Quant. Spectrosc. Radiat. Transfer, 106, 262-273.   DOI
72 Liu, L., M. I. Mishchenko, and W. P. Arnott, 2008: A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 109, 2656-2663.   DOI
73 Yi, B., P. Yang, B. A. Baum, T. L'Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K.-N. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 2794-2807, doi:10.1175/JAS-D-13-020.1.   DOI
74 Yurkin, M. A., and A. G. Hoekstra, 2007: The discrete dipole approximation: an overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer, 106, 558-589.   DOI
75 Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 2234-2247, doi:10.1016/j.jqsrt.2011.01.031.   DOI
76 Zhang, J., L. Bi, J. Liu, R. L. Panetta, P. Yang, and G. W. Kattawar, 2016: Optical scattering simulation of ice particles with surface roughness modeled using the Edwards-Wilkinson equation. J. Quant. Spectrosc. Radiat. Transfer, 178, 325-335, doi:10.1016/j.jqsrt.2016.02.013.   DOI
77 Johnson, B. R., 1988: Invariant imbedding T matrix approach to electromagnetic scattering. Appl. Opt., 27, 4861-4873.   DOI
78 van Diedenhoven, B. Cairns, A. M. Fridlind, A. S. Ackerman, and T. J. Garrett, 2013: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements-Part 2: Application to the Research Scanning Polarimeter. Atmos. Chem. Phys., 13, 3185-3203, doi:10.5194/acp-13-3185-2013.   DOI
79 van Diedenhoven, A. S. Ackerman, B. Cairns, and A. M. Fridlind, 2014a: A flexible parameterization for shortwave optical properties of ice crystals. J. Atoms. Sci., 71, 1763-1782, doi:10.1175/JAS-D-13-0205.1.   DOI
80 van Diedenhoven, A. M. Fridlind, B. Cairns, and A. S. Ackerman, 2014b: Variation of ice crystal size, shape, and asymmetry parameter in tops of tropical deep convective clouds. J. Geophys. Res. Atmos., 119, 11809-11825, doi: 10.1002/2014JD022385.   DOI
81 van Diedenhoven, A. S. Ackerman, A. M. Fridlind, and B. Cairns, 2016: On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering asymmetry parameters. J. Atmos. Sci., 73, 775-787, doi:10.1175/JAS-D-15-0150.1.   DOI
82 Garrett, T. J., 2008: Observational quantification of the optical properties of cirrus cloud. In A. A. Kokhanovsky, Ed., Light Scattering Reviews 3. Springer, 3-26.
83 Garrett, T. J., P. V. Hobbs, and H. Gerber, 2001: Shortwave, single-scattering properties of arctic ice clouds. J. Geophys. Res., 106, 15155-15172.   DOI
84 Gayet, J.-F., V. Shcherbakov, H. Mannstein, A. Minikin, U. Schumann, J. Strom, A. Petzold, J. Ovarlez, and F. Immler, 2006: Microphysical and optical properties of midlatitude cirrus clouds observed in the southern hemisphere during INCA. Q. J. R. Meteorol. Soc., 132, 2719-2748.   DOI
85 Shcherbakov, A. A., 2019: Calculation of the electromagnetic scattering by non-spherical particles based on the volume integral equation in the spherical wave function basis. J. Quant. Spectrosc. Radiat. Transfer, 231, 102-114, doi:10.1016/j.jqsrt.2019.04.022.   DOI
86 Shcherbakov, V., J.-F. Gayet, B. Backer, and P. Lawson, 2006: Light scattering by single natural ice crystals. J. Atmos. Sci., 63, 1513-1525.   DOI
87 Smith, H. R., A. J. Baran, E. Hesse, P. G. Hill, P. J. Connolly, and A. Webb, 2016: Using laboratory and field measurements to constrain a single habit shortwave optical parameterization for cirrus. Atmos. Res., 180, 226-240, doi:10.1016/j.atmosres.2016.05.005.   DOI
88 Sun, W., and Q. Fu, 1999: Anomalous diffraction theory for arbitrarily oriented hexagonal crystals. J. Quant. Spectrosc. Radiat. Transfer, 63, 727-737.   DOI
89 Sun, B., P. Yang, G. W. Kattawar, and X. Zhang, 2017: Physical-geometric optics method for large size faceted particles. Opt. Express, 25, 24044-24060, doi:10.1364/OE.25.024044.   DOI
90 Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 3-19.   DOI
91 Tyynela, J., J. Leinonen, C. D. Westbrook, D. Moisseev, and T. Nousiainen, 2013: Applicability of the Rayleigh-Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence. J. Geophys. Res. Atmos., 118, 1826-1839, doi:10.1002/jgrd.50167.   DOI
92 Panetta, R. L., C. Liu, and P. Yang, 2013: A pseudo-spectral time domain method for light scattering computation. In A. A. Kokhanovsky et al. Eds., Light Scattering Reviews 8. Springer, 139-188, doi:10.1007/978-3-642-32106-1_4.   DOI
93 Panetta, R. L., J.-N. Zhang, L. Bi, P. Yang, and G. Tang, 2016: Light scattering by hexagonal ice crystals with distributed inclusions. J. Quant. Spectrosc. Radiat. Transfer, 178, 336-349, doi:10.1016/j.jqsrt.2016.02.023.   DOI
94 Pfalzgraff, W. C., R. M. Hulscher, and S. P. Neshyba, 2010: Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals. Atmos. Chem. Phys., 10, 2927-2935, doi:10.5194/acp-10-2927-2010.   DOI
95 Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502-525, doi:10.1109/TGRS.2016.2610522.   DOI
96 Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705-714.   DOI
97 Liou, K. N., Y. Takano, C. He, P. Yang, L. R. Leung, Y. Gu, and W. L. Lee, 2014: Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models. J. Geophys. Res. Atmos., 119, 7616-7632, doi:10.1002/2014JD021665.   DOI
98 Liu, C., R. L. Panetta, and P. Yang, 2012: Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J. Quant. Spectrosc. Radiat. Transfer, 113, 1728-1740, doi:10.1016/j.jqsrt.2012.04.021.   DOI
99 Yang, P., W., X. Jin, and X. Gao, 2021: Vector radiative transfer equation for arbitrary shape particles derived from Maxwell's electromagnetic theory. J. Quant. Spectrosc. Radiat. Transfer, 107307, doi:10.1016/j.jqsrt.2020.107307.   DOI
100 Yee, K., 1966: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat., 14, 302-307.   DOI
101 Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res. Atmos., 105, 4699-4718.   DOI
102 Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, 2003: Singlescattering properties of droxtals. J. Quant. Spectrosc. Rad. Transfer, 79-80, 1159-1169.   DOI
103 Yang, P., G. W. Kattawar, K.-N. Liou, and J. Q. Lu, 2004: Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles. Appl. Opt., 43, 4611-4624.   DOI
104 Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for non-spherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 5512-5523.   DOI
105 Gayet, J.-F., G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, 2011: Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment. Atmos. Chem. Phys., 11, 2537-2544, doi:10.5194/acp-11-2537-2011.   DOI
106 Geogdzhayev, I., and B. Van Diedenhoven, 2016: The effect of roughness model on scattering properties of ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 178, 134-141, doi:10.1016/j.jqsrt.2016.03.001.   DOI
107 Gerber, H., Y. Takano, T. J. Garrett, and P. V. Hobbs, 2000: Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds. J. Atmos. Sci., 57, 3021-3034.   DOI
108 Gerber, H., T. J. Garrett, A. J. Heymsfield, M. Poellot, and C. Twohy, 2004: Nephelometer measurements in Florida thunderstorms. Presentation, 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Union of Geodesy and Geophysics, 1092-1094.
109 Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res. Atmos., 116, D06119, doi:10.1029/2010JD014574.   DOI
110 Ulanowski, Z., P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 1649-1662, doi:10.5194/acp-14-1649-2014.   DOI
111 Sassen, K., N. C. Knight, Y. Takano, and A. J. Heymsfield, 1994: Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies. Appl. Opt., 33, 4590-4601.   DOI
112 Schnaiter, M., S. Buttner, O. Mohler, J. Skrotzki, M. Vragel, and R. Wagner, 2012: Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals - Cloud chamber measurements in the context of contrail and cirrus microphysics. Atmos. Chem. Phys., 12, 10465-10484, doi:10.5194/acp-12-10465-2012.   DOI
113 Schnaiter, M., and Coauthors, 2016: Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds. Atmos. Chem. Phys., 16, 5091-5110, doi:10.5194/acp-16-5091-2016.   DOI
114 Liu, C., R. L. Panetta, and P. Yang, 2013: The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes. J. Quant. Spectrosc. Radiat. Transfer, 129, 169-185, doi:10.1016/j.jqsrt.2013.06.011.   DOI
115 Liu, C., P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt, 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys., 14, 13719-13737, doi:10.5194/acp-14-13719-2014.   DOI
116 Liu, C., J. Li, Y. Yin, B. Zhu, and Q. Feng, 2017: Optical properties of black carbon aggregates with non-absorptive coating. J. Quant. Spectrosc. Radiat. Transfer, 187, 443-452, doi:10.1016/j.jqsrt.2016.10.023.   DOI
117 Kahnert, M., 2013: The T-matrix code Tsym for homogeneous dielectric particles with finite symmetries. J. Quant. Spectrosc. Radiat. Transfer, 123, 62-78, doi:10.1016/j.jqsrt.2012.12.019.   DOI
118 Kahnert, M., 2016: Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: a tutorial review. J. Quant. Spectrosc. Radiat. Transfer, 178, 22-37.   DOI
119 Hioki, S., P. Yang, B. A. Baum, S. Platnick, K. G. Meyer, M. D. King, and J. Riedi, 2016: Degree of ice particle surface roughness inferred from polarimetric observations. Atmos. Chem. Phys., 16, 7545-7558, doi:10.5194/acp-16-7545-2016.   DOI
120 Vogelmann, A. M., and T. P. Ackerman, 1995: Relating cirrus cloud properties to observed fluxes: A critical assessment. J. Atmos. Sci., 52, 4285-4301.   DOI
121 Waterman, P. C., 1971: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825-839.   DOI
122 Wendling, P., R. Wendling, and H. K. Weicjmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18, 2663-2671.   DOI
123 Baran, A. J., R. Cotton, K. Furtado, S. Hayemann, L.-C. Labonnote, F. Marenco, A. Smith, and J.-C. Thelen, 2014: A self-consistent scattering model for cirrus. II: The high and low frequencies. Q. J. R. Meteorol. Soc., 140, 1039-1057, doi:10.1002/qj.2193.   DOI
124 Baum, B. A., P. Yang, S. Nasiri, A. K. Heidinger, A. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm-1. J. Appl. Meteorol. Clim., 46, 423-434.   DOI
125 Baum, B. A., P. Yang, Y. X. Hu, and Q. Feng, 2010: The impact of ice particle roughness on the scattering phase matrix. J. Quant. Spectrosc. Radiat. Transfer, 111, 2534-2549, doi:10.1016/j.jqsrt.2010.07.008.   DOI
126 Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteorol. Clim, 50, 1037-1056, doi:10.1175/2010JAMC2608.1.   DOI
127 Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Meteor. Mon., 58, 9.1-9.23, doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.   DOI
128 Collier, C. T., E. Hesse, L. Taylor, Z. Ulanowski, A. Penttila, and T. Nousiainen, 2016: Effects of surface roughness with two scales on light scattering by hexagonal ice crystals large compared to the wavelength: DDA results. J. Quant. Spectrosc. Radiat. Transfer, 182, 225-239, doi:10.1016/j.jqsrt.2016.06.007.   DOI
129 DeVoe, H., 1964: Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys., 41, 393-400.   DOI
130 Doicu, A., and M. I. Mishchenko, 2018: Overview of methods for deriving the radiative transfer theory from the Maxwell equations. I: Approach based on the far-field Foldy equations. J. Quant. Spectrosc. Radiat. Transfer, 220, 123-139, doi:10.1016/j.jqsrt.2018.09.004.   DOI
131 Donald, J. M., A. Golden, and S. G. Jennings, 2009: OpenDDA: a novel high-performance computational framework for the discrete dipole approximation. Int. J. High Perform. C., 23, 42-61.   DOI
132 Liu, Q. H., 1998: The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett., 15, 158-165.   DOI
133 Macke, A., 1993: Scattering of light by polyhedral ice crystals. Appl. Opt., 32, 2780-2788.   DOI
134 Macke, A., J. Mueller, and E. Raschke, 1996a: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 2813-2825.   DOI
135 Macke, A., M. I. Mishchenko, and B. Cairns, 1996b: The influence of inclusions on light scattering by large ice particles. J. Geophys. Res. Atmos., 101, 23311-23316.   DOI
136 Mackowski, D. W., 2014: A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media. J. Quant. Spectrosc. Radiat. Transfer, 133, 264-270, doi:10.1016/j.jqsrt.2013.08.012.   DOI
137 Mackowski, D. W., and M. I. Mishchenko, 1996: Calculation of the T matrix and the scattering matrix for ensembles of spheres. J. Opt. Soc. Am. A, 13, 2266-2278.   DOI
138 Mackowski, D. W., and M. I. Mishchenko, 2011: A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transfer, 112, 2182-2192, doi:10.1016/j.jqsrt.2011.02.019.   DOI
139 Magee, N. B., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos. Chem. Phys., 14, 12357-12371, doi:10.5194/acp-14-12357-2014.   DOI
140 Bi, L., and P. Yang, 2014: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 17-35, doi:10.1016/j.jqsrt.2014.01.013.   DOI
141 Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011: Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method. J. Quant. Spectrosc. Radiat. Transfer, 112, 1492-1508, doi:10.1016/j.jqsrt.2011.02.015.   DOI
142 Um, J., 2020: Calculations of optical properties of cloud particles to improve the accuracy of forward scattering probes for in-situ aircraft cloud measurements. Atmosphere, 30, 75-89, doi:10.14191/Atmos.2020.30.1.075 (in Korean with English abstract).   DOI
143 Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Clim., 46, 757-775.   DOI
144 Um, J., and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates. Q. J. R. Meteorol. Soc., 135, 291-304.   DOI
145 Um, J., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 3159-3171, doi:10.5194/acp-11-3159-2011.   DOI
146 Muinonen, K., T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, 1996: Light scattering by Gaussian random particles: Ray optics approximation. J. Quant. Spectrosc. Radiat. Transfer, 55, 577-601.   DOI
147 Neshyba, S. P., B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, 2013: Roughness metrics of prismatic facets of ice. J. Geophys. Res. Atmos., 118, 3309-3318, doi:10.1002/jgrd.50357.   DOI
148 Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 2229-2248.   DOI
149 Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11, 1491-1499.   DOI
150 Schulz, F. M., K. Stamnes, and J. J. Stamnes, 1998: Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates. Appl. Opt., 37, 7875-7896.   DOI
151 McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 2458-2478.   DOI
152 Mandel, L., and E. Wolf, 1995: Optical coherence and quantum optics, Cambridge university press, 1194 pp.
153 Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817-832.   DOI
154 Magee, N. B., and Coauthors, 2021: Captured cirrus ice particles in high definition. Atmos. Chem. Phys. Discuss., in review, 2020, doi:10.5194/acp-2020-486.   DOI
155 Markkanen, J., and A. J. Yuffa, 2017: Fast superposition Tmatrix solution for clusters with arbitrarily-shaped constituent particles. J. Quant. Spectrosc. Radiat. Transfer, 189, 181-188, doi:10.1016/j.jqsrt.2016.11.004.   DOI
156 Mishchenko, M. I., 2003: Radiative transfer theory: From Maxwell's equations to practical applications. In B. A. van Tiggelen et al. Eds., Wave Scattering in Complex Media: From Theory to Applications, Springer, 366-414.
157 Mishchenko, M. I., 2006: Maxwell's equations, radiative transfer, and coherent backscattering: A general perspective. J. Quant. Spectrosc. Radiat. Transfer, 101, 540-555.   DOI
158 Mishchenko, M. I., 2009: Electromagnetic scattering by nonspherical particles: A tutorial review. J. Quant. Spectrosc. Radiat. Transfer, 110, 808-832.   DOI
159 Mishchenko, M. I., 2020: Comprehensive thematic T-matrix reference database: a 2017-2019 update. J. Quant. Spectrosc. Radiat. Transfer, 242, 106692, doi:10.1016/j.jqsrt.2019.106692.   DOI
160 Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission. J. Geophys. Res. Atmos., 103, 1799-1805.   DOI
161 McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate mean-scattering properties and multispectral radiances: CEPEX April 4, 1993, case study. J. Geophys. Res. Atmos., 104, 31763-31779.   DOI
162 McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57, 1841-1853.   DOI
163 Kahnert, M., and A. Devasthale, 2011: Black carbon fractal morphology and short-wave radiative impact: a modelling study. Atmos. Chem. Phys., 11, 11745-11759, doi:10.5194/acp-11-11745-2011.   DOI
164 Knap, W. H., M. Hess, P. Stammes, R. B. A. Koelemeijer, and P. D. Watts, 1999: Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystals. J. Geophys. Res. Atmos., 104, 31721-31730.   DOI
165 Korolev, A. V., G. A. Isaac, and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 1299-1302.   DOI