• Title/Summary/Keyword: ice velocity

Search Result 111, Processing Time 0.027 seconds

Effects of spray nozzles on the structure of twin spray (이중 분무의 중첩 구조에 미치는 분무 노즐의 영향)

  • Jurng, J.S.;Park, C.B.;Im, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.51-59
    • /
    • 1996
  • An experiment was carried out on the structure of twin spray from pressurize-swirl nozzles, in order to investigate the effect of different size of spray nozzles on the characteristics of the overlap of two single sprays, for example, mean diameter, number density, and spatial distribution of flow rate. Using image processing method, the distributions of size and velocity of droplets of a single spray and twin spray were measured and compared to investigate the overlapping effect of two identical sprays. Comparing experimental results from a twin-spray with those from two-single sprays shows that the flow rate distribution of the twin-spray was concentrated around the midst of the overlapping region of two sprays. In this region, Sauter mean diameter (SMD) did not change much in the twin spray from 6032 nozzles, but it was smaller by 10 micrometers in the twin-spray than two-single sprays from 60063 nozzles. In spite of large difference in Weber numbers of the colliding sprays between the 60063 and 6032 nozzles, the phenomena did not have a big change in the overlapping region of twin spray. This shows that in the collision between droplets from two single spray in the overlapping region to cause the disruption of droplets, the size distribution of spray droplets was also important as well as Weber number.

  • PDF

Analysis of Solidification Process Around a Vertical Tube Considering Density Change and Natural Convection (수직원관 주위에서 밀도차와 자연대류를 고려한 응고과정 해석)

  • 김무근;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.142-155
    • /
    • 1992
  • Numerical analysis is performed for the unsteady axisymmetric two dimensional phase change problem of freezing of water around a vertical tube. Heat conduction in the tube wall and solid phase, natural convection in liquid phase and volume expansion caused by density difference between solid and liquid phases are included in the numerical analysis. Existing correlation is used for estimating density-temperature relation of water, and the effect of volume expansion is reflected as fluid velocity at the interface and the free surface. As pure water has maximum density at 4.deg. C, it is found that there exists an initial temperature at which the flow direction reverses near the interface and by this effect the slope of interface becomes reversed depending on the initial temperature of water. By considering natural convection and solid-liquid density difference in the calculation, their effects on phase change process are studied and the effects of various parameters are also studied quantitatively.

A study on the Dynamic Mechanical and Dielectric Loss according to Quenched Condition in Low Density Polyethylene fer Power Cable (전력 케이블용 저밀도 폴리에틸렌의 냉각 조건에 따른 기계적 및 유전손실에 관한 연구)

  • 김재환;권병휘;박재준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.5
    • /
    • pp.27-37
    • /
    • 1992
  • We studied the dielectric and dynamic mechanical losses according to the quenching condition in low density polyethylene being used to power cables. According to severe quenching condition, characteristics of the temperature in internal friction los peak have decreased the magnitude of loss peak as amorphous region lengthen. From now on, the frequency dependent characteristics of dielectric loss have investigated at room temperature, and the dielectric loss peak due to interface polarization, between crystal and amorphous region, occurs about 30[Hz], and that, the peak due to orientation polarization in correspondence to the loss peak in internal friction has observed at about 3 [MHz]. As quenching velocity increased, the effect on quenching condition about the dielectric loss has decreased the magnitude of the loss peak. Thus, estimation has been carried out on the activation energies nd the degree of crystallinity by means of X-ray diffraction are obtained as follows: room quenching : 26.4 [kal/mole] and 54.73 [%], ice quenching : 25.6 [kcal/mole] and 48.47 [%], liquid nitrogen quenching specimens : 22.56 [kcal/mole] and 40.95 [%].

  • PDF

GPR investigation of glacier on Livingstone Island, Antarctica. (GPR을 이용한 리빙스톤섬 빙하층 탐사)

  • Lee Joohan;Jin Young Keun;Hong Jong Kuk;Hong Sungmin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.151-154
    • /
    • 2005
  • With the aim of global environmental monitoring we carried out GPR (Ground Penetrating Radar) surveys at the Livingstion Island in Antarctica. Research area is near the Mt. Charra (340m) in Livingston Island which is located 80 km to the southwest of the King Sejong Station. We have collected 5 lines of GPR data. Two kinds of survey, CMP (Common Midpoint) surveys and common offset profiles, were performed. We classified the glacier into the three layers using electromagnetic velocity of the ice and reflection characteristic, The depth of glacier reached about $80{\~}110\;m$. Some reflectors showed the evidence of the water filled englacial drainage and volcanic ash-layers.

  • PDF

GPR Investigation of Glacier on Livingstone Island, Antarctica (GPR을 이용한 리빙스톤섬 빙하층 탐사)

  • Lee, Joo-Han;Jin, Young-Keun;Hong, Jong-Kuk;Hong, Sung-Min;Kim, Yea-Dong
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.63-66
    • /
    • 2005
  • With the aim of global environmental monitoring we carried out GPR (Ground Penetrating Radar) surveys at the Livingstion Island in Antarctica. Research area is near the Mt. Charra (340 m) in Livingston Island which is located 80 km to the southwest of the King Sejong Station. We have collected 5 lines of GPR data. Two kinds of survey, CMP (Common Midpoint) surveys and common offset profiles, were performed. We classified the glacier into the three layers using electromagnetic velocity of the ice and reflection characteristic. The depth of glacier reached about 80∼110 m. Some reflectors showed the evidence of the water filled englacial drainage and volcanic ash-layers.

  • PDF

Comparison of the WSA-ENLIL CME propagation model with three cone types and an empirical model

  • Jang, Soojeong;Moon, Yong-Jae;Na, HyeonOck
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.124.1-124.1
    • /
    • 2012
  • We have made a comparison of the WSA-ENLIL CME propagation model with three cone types and an empirical model using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. For this study we consider three different cone models (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine CME cone parameters (radial velocity, angular width and source location), which are used for input parameters of the WSA-ENLIL CME propagation model. The mean absolute error (MAE) of the arrival times at the Earth for the elliptical cone model is 10 hours, which is about 2 hours smaller than those of the other models. However, this value is still larger than that (8.7 hours) of an empirical model by Kim et al. (2007). We are investigating several possibilities on relatively large errors of the WSA-ENLIL cone model, which may be caused by CME-CME interaction, background solar wind speed, and/or CME density enhancement.

  • PDF

Freezing Characteristics of Still Water Under a Subcooling Condition (과냉각상태 정지수의 동결특성에 관한 연구)

  • 박영하;류정인
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.576-582
    • /
    • 1999
  • this paper presents the results of experiments on subsooling degree characteristics which was analyzed in accordance with various test conditions. The test water was cooled below freezing point temperature, was measured. The results showed that using city water as the test water in pyrex tube indicated small standard deviation (SD) compared to using distilled water, and minimum subcooling degree was 6.9$^{\circ}C$ and 6.2$^{\circ}C$, respectively. In addition, a critical subcooling degree in a pyrex tube was larger than that in a stainless steel tube about 0.7$^{\circ}C$ for the same test water. It was also observed that the standard deviation of data for the distilled water showed decreasing tendency aw the increasing with cooling velocity. Then metaldehyde showed a considerable effect on the subcooling degree of distilled water as the ice nucleating substance with increase of test number.

  • PDF

A Study on Temperature Variation of Contact Wire by De-icing System (해빙시스템에 의한 전차선의 온도변화에 관한 연구)

  • Ahn, Byeong-Lib;Lee, Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.69-74
    • /
    • 2008
  • The frost and freezing on contact wire in winter is a very serious problem Shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire. Extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing system is to melt frost or freezing in contact wire. The principle of do-icing system is to melt frost or ice by Joule heat of contact wire impedance. The temperature of the contact wire was increased with increasing the current. But temperature of contact wire was decreased with increasing the velocity of the wind.

Computations of Droplet Impingement on Airfoils in Two-Phase Flow

  • Kim, Sang-Dug;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2312-2320
    • /
    • 2005
  • The aerodynamic effects of leading-edge accretion can raise important safety concerns since the formulation of ice causes severe degradation in aerodynamic performance as compared with the clean airfoil. The objective of this study is to develop a numerical simulation strategy for predicting the particle trajectory around an MS-0317 airfoil in the test section of the NASA Glenn Icing Research Tunnel and to investigate the impingement characteristics of droplets on the airfoil surface. In particular, predictions of the mean velocity and turbulence diffusion using turbulent flow solver and Continuous Random Walk method were desired throughout this flow domain in order to investigate droplet dispersion. The collection efficiency distributions over the airfoil surface in simulations with different numbers of droplets, various integration time-steps and particle sizes were compared with experimental data. The large droplet impingement data indicated the trends in impingement characteristics with respect to particle size ; the maximum collection efficiency located at the upper surface near the leading edge, and the maximum value and total collection efficiency were increased as the particle size was increased. The extent of the area impinged on by particles also increased with the increment of the particle size, which is similar as compared with experimental data.

CME mean density and its change from the corona to the Earth

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2019
  • Understanding three-dimensional structure and parameters (e.g., radial velocity, angular width, source location and density) of coronal mass ejections (CMEs) is essential for space weather forecast. In this study, we determine CME mean density in solar corona and near the Earth. We select 38 halo CMEs, which have the corresponding interplanetary CMEs (ICMEs), by SOHO/LASCO from 2000 to 2014. To estimate a CME volume, we assume that a CME structure is a full ice-cream cone which is a symmetrical circular cone combined with a hemisphere. We derive CME mean density as a function of radial height, which are approximately fitted to power-law functions. The average of power-law indexes is about 2.1 in the LASCO C3 field of view. We also obtain power-law functions for both CME mean density at 21 solar radii and ICME mean density at 1AU, with the average power-law index of 2.6. We estimate a ratio of CME density to background density based on the Leblanc et al.(1998) at 21 solar radii. Interestingly, the average of the ratios is 4.0, which is the same as a default value used in the WSA-ENLIL model.

  • PDF