• 제목/요약/키워드: hysteresis model

검색결과 535건 처리시간 0.04초

Dynamic Hysteresis Model Based on Fuzzy Clustering Approach

  • Mourad, Mordjaoui;Bouzid, Boudjema
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.884-890
    • /
    • 2012
  • Hysteretic behavior model of soft magnetic material usually used in electrical machines and electronic devices is necessary for numerical solution of Maxwell equation. In this study, a new dynamic hysteresis model is presented, based on the nonlinear dynamic system identification from measured data capabilities of fuzzy clustering algorithm. The developed model is based on a Gustafson-Kessel (GK) fuzzy approach used on a normalized gathered data from measured dynamic cycles on a C core transformer made of 0.33mm laminations of cold rolled SiFe. The number of fuzzy rules is optimized by some cluster validity measures like 'partition coefficient' and 'classification entropy'. The clustering results from the GK approach show that it is not only very accurate but also provides its effectiveness and potential for dynamic magnetic hysteresis modeling.

다공성 매질에서 이력현상에 대한 실험적 연구 (Experimental Study on Hysteresis Phenomena in Porous Media)

  • 강우영;박재현
    • 물과 미래
    • /
    • 제28권4호
    • /
    • pp.215-222
    • /
    • 1995
  • 비포화 흐름의 지배방정식인 Richards식을 수치해석하기 위해 필요한 물보유함수는 이력현상을 가지고 있으며 이러한 이력현상은 비포화 흐름특성에 중요한 영향을 미친다. 본 연구에서는 토양시료의 물보유함수 실측치를 이용하여 기존의 이력현상 모형들의 정확성을 검토하였다. 이를 위해 물보유함수 이력현상을 실측할 수 있는 실험장치를 개발하여 국내 토양시료를 대상으로한 주젖음과정과 주마름과정의 실측치를 구하였고, 이 자료로부터 물보유함수 추정식인 van Genuchten식의 매개변수를 추정하였다. 추정된 주젖음곡선을 이력현상 모형인 Model I-1(Mualem), Model II-1(Mualem) 과 Model III-2(박과 선우)에 적용하여 주마름곡선을 모의한 결과, Model I-1의 모의곡선은 주마름곡선의 실측치를 과대 모의하고 Model II-1은 과소 모의하지만 Model III-2는 실측치에 근접하게 모의하였다.

  • PDF

Analysis of hysteresis rule of energy-saving block and invisible multi-ribbed frame composite wall

  • Lin, Qiang;Li, Sheng-cai;Zhu, Yongfu
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.261-272
    • /
    • 2021
  • The energy-saving block and invisible multi-ribbed frame composite wall (EBIMFCW) is a new type of load-bearing wall. The study of this paper focus on it is hysteresis rule under horizontal cyclic loading. Firstly, based on the experimental data of the twelve specimens under horizontal cyclic loading, the influence of two important parameters of axial compression ratio and shear-span ratio on the restoring force model was analyzed. Secondly, a tetra-linear restoring force model considering four feature points and the degradation law of unloading stiffness was established by combining theoretical analysis and regression analysis of experimental data, and the theoretical formula of the peak load of the EBIMFCW was derived. Finally, the hysteretic path of the restoring force model was determined by analyzing the hysteresis characteristics of the typical hysteresis loop. The results show that the curves calculated by the tetra-linear restoring force model in this paper agree well with the experimental curves, especially the calculated values of the peak load of the wall are very close to the experimental values, which can provide a reference for the elastic-plastic analysis of the EBIMFCW.

Positioning control of pzt actuators using neuro control with hysteresis model (ICCAS 2003)

  • Lee, Byung-Ryong;Lee, Soo-Hee;Yang, Soon-Yong;Ahn, Kyung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.382-385
    • /
    • 2003
  • In this paper, in order to improve the control performance of piezoelectric actuator, an integrated control structure is proposed. The control structure consists of inverse hysteresis model , to compensate the hysteresis nonlinearty problem, and feedforward - feedback controller to give a good tracking performance. The inverse hysteresis model and neural network are used as feed-forward controller, and PID controller is used as a feedback controller. From diverse experiments it is concluded that the proposed control scheme gives good tracking performance than the classical control does.

  • PDF

비정질 실리콘 박막 트랜지스터 히스테리시스 특성 (Hysteresis Characteristics of a-Si:H TFT)

  • 이우선;정용호;김남오;김병인;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 1995
  • We fabricate a bottom gate a-Si:H TFT on N-Type <100> Si wafer. According to the variation of gate and drain voltage, the hysteresis characteristic curves were measured experimentally. Also, we showed that the model predict the hysteresis characteristic successfully. Drain current on the hysteresis characteristic currie showed an exponential variation. Hysteresis area of TFT increased with the drain voltage increase and decreases with the drain voltage decrease.

  • PDF

Hysteresis modelling of reinforced concrete columns under pure cyclic torsional loading

  • Mondal, Tarutal Ghosh;Kothamuthyala, Sriharsha R.;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.11-21
    • /
    • 2017
  • It has been observed in the past that, the reinforced concrete (RC) bridge columns are very often subjected to torsional moment in addition to flexure and shear during seismic vibration. Ignoring torsion in the design can trigger unexpected shear failure of the columns (Farhey et al. 1993). Performance based seismic design is a popular design philosophy which calls for accurate prediction of the hysteresis behavior of structural elements to ensure safe and economical design under earthquake loading. However, very few investigations in the past focused on the development of analytical models to accurately predict the response of RC members under cyclic torsion. Previously developed hysteresis models are not readily applicable for torsional loading owing to significant pinching and stiffness degradation associated with torsion (Wang et al. 2014). The present study proposes an improved polygonal hysteresis model which can accurately predict the hysteretic behavior of RC circular and square columns under torsion. The primary curve is obtained from mechanics based softened truss model for torsion. The proposed model is validated with test data of two circular and two square columns. A good correlation is observed between the predicted and measured torque-twist behavior and dissipated energy.

압전 소자 기반 구동 유닛의 히스테리시스 보상 강인 제어기 설계 (A Robust Control System Design for Compensating Hysteresis of a Piezoelectric Actuator-based Actuation Unit)

  • 김화수;김종원
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.324-330
    • /
    • 2012
  • In this paper, we presents a robust control system design for compensating hysteresis of a piezoelectric actuator-based actuation unit. First, the dynamics between the input voltage and the output displacement of the actuation unit are unravelled via a non-parametric system identification method. From the dynamic characteristics of those experimental transfer functions, a parametric model is then derived, whose dynamics match those of the non-parametric ones under various conditions on input voltages. A robust controller is constructed on the basis of this parametric model in order not only to effectively compensate the hysteresis of the actuation unit but also to guarantee the robust stability. Extensive experiments show that the proposed robust control system successfully mitigate the effect of the hysteresis and improve the tracking capability of the actuation unit.

Direct implementation of stochastic linearization for SDOF systems with general hysteresis

  • Dobson, S.;Noori, M.;Hou, Z.;Dimentberg, M.
    • Structural Engineering and Mechanics
    • /
    • 제6권5호
    • /
    • pp.473-484
    • /
    • 1998
  • The first and second moments of response variables for SDOF systems with hysteretic nonlinearity are obtained by a direct linearization procedure. This adaptation in the implementation of well-known statistical linearization methods, provides concise, model-independent linearization coefficients that are well-suited for numerical solution. The method may be applied to systems which incorporate any hysteresis model governed by a differential constitutive equation, and may be used for zero or non-zero mean random vibration. The implementation eliminates the effort of analytically deriving specific linearization coefficients for new hysteresis models. In doing so, the procedure of stochastic analysis is made independent from the task of physical modeling of hysteretic systems. In this study, systems with three different hysteresis models are analyzed under various zero and non-zero mean Gaussian White noise inputs. Results are shown to be in agreement with previous linearization studies and Monte Carlo Simulation.

비선형성을 고려한 압전소자의 모델링 및 운동제어 (Modeling and Motion Control of Piezoelectric Actuator)

  • 박은철;김영식;김인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.630-637
    • /
    • 2003
  • This paper proposes a new modeling scheme to describe the hysteresis and the dynamic characteristics of piezoelectric actuators in the inchworm and develops a control algorithm for the precision motion control. From the analysis of piezoelectric actuator behaviors, the hysteresis can be described by the functions of a maximum input voltage. The dynamic characteristics are also identified by the frequency domain modeling technique based on the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. Therefore, the sliding mode control and the Kalman filter are developed for the precision motion control of the inch-warm. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

역 히스테리시스 모델링과 오차학습을 이용한 압전구동기의 초정밀 위치제어 (Precision Position Control System of Piezoelectric Actuator Using Inverse Hysteresis Modeling and Error Learning Method)

  • 김형석;이수희;정해철;이병룡;안경관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.383-388
    • /
    • 2004
  • A piezoelectric actuator yields hysteresis effect due to its composed ferroelectric. Hysteresis nonlinearty is neglected when a piezoelectric actuator moves with short stroke. However when it moves with long stroke and high frequency, the hysteresis nonlinearty can not be neglected. The hysteresis nonlinearty of piezoelectric actuator degrades the control performance in precision position control. In this paper, in order to improve the control performance of piezoelectric actuator, an inverse modeling scheme is proposed to compensate the hysteresis nonlinearty problem. And feedforward - feedback controller is proposed to give a good tracking performance. The Feedforward controller is inverse hysteresis model, Nueral network and PID control is used as a feedback controller. To show the feasibility of the proposed controller and hysteresis modeling, some experiments have been carried out. It is concluded that the proposed control scheme gives good tracking performance

  • PDF