• Title/Summary/Keyword: hyperspectral imaging

Search Result 112, Processing Time 0.031 seconds

Nondestructive Classification of Viable and Non-viable Radish (Raphanus sativus L) Seeds using Hyperspectral Reflectance Imaging (초분광 반사광 영상을 이용한 무(Raphanus sativus L) 종자의 발아와 불발아 비파괴 판별)

  • Ahn, Chi Kook;Mo, Chang Yeun;Kang, Jum-Soon;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.411-419
    • /
    • 2012
  • Purpose: Nondestructive evaluation of seed viability is a highly demanded technique in the seed industry. In this study, hyperspectral imaging system was used for discrimination of viable and non-viable radish seeds. Method: The spectral data with the range from 400 to 1000 nm measured by hyperspectral reflectance imaging system were used. A calibration and a test models were developed by partial least square discrimination analysis (PLS-DA) for classification of viable and non-viable radish seeds. Either each data set of visible (400~750 nm) and NIR (750~1000 nm) spectra and the spectra of the combined spectral ranges were used for developing models. Results: The discrimination accuracy of calibration was 84% for visible range and 76.3% for NIR range. The discrimination accuracy of test was 84.2% for visible range and 75.8% for NIR range. The discrimination accuracies of calibration and test with full range were 92.2% and 92.5%, respectively. The resultant images based on the optimal PLS-DA model showed high performance for the discrimination of the nonviable seeds from the viable seeds with the accuracy of 95%. Conclusions: The results showed that hyperspectral reflectance imaging has good potential for discriminating nonviable radish seeds from massive amounts of viable seeds.

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.

Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging (초분광 반사광 영상을 이용한 상추(Lactuca sativa L) 종자의 활력 비파괴측정기술 개발에 관한 연구)

  • Ahn, Chi-Kook;Cho, Byoung-Kwan;Mo, Chang Yeun;Kim, Moon S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.518-525
    • /
    • 2012
  • In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

Hyperspectral imaging technique to evaluate the firmness and the sweetness index of tomatoes

  • Rahman, Anisur;Park, Eunsoo;Bae, Hyungjin;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.823-837
    • /
    • 2018
  • The objective of this study was to evaluate the firmness and the sweetness index (SI) of tomatoes with a hyperspectral imaging (HSI) technique within the wavelength range of 1000 - 1550 nm. The hyperspectral images of 95 tomatoes were acquired with a push-broom hyperspectral reflectance imaging system, from which the mean spectra of each tomato were extracted from the regions of interest. The reference firmness and sweetness index of the same sample was measured and calibrated with their corresponding spectral data by partial least squares (PLS) regression with different preprocessing methods. The calibration model developed by PLS regression based on the Savitzky-Golay second-derivative preprocessed spectra resulted in a better performance for both the firmness and the SI of the tomatoes compared to models developed by other preprocessing methods. The correlation coefficients ($R_{pred}$) were 0.82, and 0.74 with a standard error of prediction of 0.86 N, and 0.63, respectively. Then, the feature wavelengths were identified using a model-based variable selection method, i.e., variable importance in projection, from the PLS regression analyses. Finally, chemical images were derived by applying the respective regression coefficients on the spectral image in a pixel-wise manner. The resulting chemical images provided detailed information on the firmness and the SI of the tomatoes. The results show that the proposed HSI technique has potential for rapid and non-destructive evaluation of firmness and the sweetness index of tomatoes.

Detecting Drought Stress in Soybean Plants Using Hyperspectral Fluorescence Imaging

  • Mo, Changyeun;Kim, Moon S.;Kim, Giyoung;Cheong, Eun Ju;Yang, Jinyoung;Lim, Jongguk
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.335-344
    • /
    • 2015
  • Purpose: Soybean growth is adversely affected by environmental stresses such as drought, extreme temperatures, and nutrient deficiency. The objective of this study was to develop a method for rapid measurement of drought stress in soybean plants using a hyperspectral fluorescence imaging technique. Methods: Hyperspectral fluorescence images were obtained using UV-A light with 365 nm excitation. Two soybean cultivars under drought stress were analyzed. A partial least square regression (PLSR) model was used to predict drought stress in soybeans. Results: Partial least square (PLS) images were obtained for the two soybean cultivars using the results of the developed model during the period of drought stress treatment. Analysis of the PLS images showed that the accuracy of drought stress discrimination in the two cultivars was 0.973 for an 8-day treatment group and 0.969 for a 6-day treatment group. Conclusions: These results validate the use of hyperspectral fluorescence images for assessing drought stress in soybeans.

Efflorescence assessment using hyperspectral imaging for concrete structures

  • Kim, Byunghyun;Cho, Soojin
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.209-221
    • /
    • 2018
  • Efflorescence is a phenomenon primarily caused by a carbonation process in concrete structures. Efflorescence can cause concrete degradation in the long term; therefore, it must be accurately assessed by proper inspection. Currently, the assessment is performed on the basis of visual inspection or image-based inspection, which may result in the subjective assessment by the inspectors. In this paper, a novel approach is proposed for the objective and quantitative assessment of concrete efflorescence using hyperspectral imaging (HSI). HSI acquires the full electromagnetic spectrum of light reflected from a material, which enables the identification of materials in the image on the basis of spectrum. Spectral angle mapper (SAM) that calculates the similarity of a test spectrum in the hyperspectral image to a reference spectrum is used to assess efflorescence, and the reference spectral profiles of efflorescence are obtained from theUSGS spectral library. Field tests were carried out in a real building and a bridge. For each experiment, efflorescence assessed by the proposed approach was compared with that assessed by image-based approach mimicking conventional visual inspection. Performance measures such as accuracy, precision, and recall were calculated to check the performance of the proposed approach. Performance-related issues are discussed for further enhancement of the proposed approach.

Destripe Hyperspectral Images with Spectral-spatial Adaptive Unidirectional Variation and Sparse Representation

  • Zhou, Dabiao;Wang, Dejiang;Huo, Lijun;Jia, Ping
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.752-761
    • /
    • 2016
  • Hyperspectral images are often contaminated with stripe noise, which severely degrades the imaging quality and the precision of the subsequent processing. In this paper, a variational model is proposed by employing spectral-spatial adaptive unidirectional variation and a sparse representation. Unlike traditional methods, we exploit the spectral correction and remove stripes in different bands and different regions adaptively, instead of selecting parameters band by band. The regularization strength adapts to the spectrally varying stripe intensities and the spatially varying texture information. Spectral correlation is exploited via dictionary learning in the sparse representation framework to prevent spectral distortion. Moreover, the minimization problem, which contains two unsmooth and inseparable $l_1$-norm terms, is optimized by the split Bregman approach. Experimental results, on datasets from several imaging systems, demonstrate that the proposed method can remove stripe noise effectively and adaptively, as well as preserve original detail information.

Decomposition of Interference Hyperspectral Images Based on Split Bregman Iteration

  • Wen, Jia;Geng, Lei;Wang, Cailing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3338-3355
    • /
    • 2018
  • Images acquired by Large Aperture Static Imaging Spectrometer (LASIS) exhibit obvious interference stripes, which are vertical and stationary due to the special imaging principle of interference hyperspectral image (IHI) data. As the special characteristics above will seriously affect the intrinsic structure and sparsity of IHI, decomposition of IHI has drawn considerable attentions of many scientists and lots of efforts have been made. Although some decomposition methods for interference hyperspectral data have been proposed to solve the above problem of interference stripes, too many times of iteration are necessary to get an optimal solution, which will severely affect the efficiency of application. A novel algorithm for decomposition of interference hyperspectral images based on split Bregman iteration is proposed in this paper, compared with other decomposition methods, numerical experiments have proved that the proposed method will be much more efficient and can reduce the times of iteration significantly.

Application of Hyperspectral Imaging System to Analyze Vascular Alteration for Preclinical Models (전임상 혈관분석을 위한 초분광 이미징 시스템의 활용)

  • Choe, Se-Woon;Woo, Young Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.69-76
    • /
    • 2015
  • We present microscopy based hyperspectral imaging system that successively shows high spatial (micrometer) and temporal resolutions (milisecond), and acquired pseudocolor hemoglobin saturation map a result of various image processing techniques can provide additional information such as oxygen transport, abnormal vascularity and therapeutic effects besides structural and physiological measurements in various diseases. To increase understanding of vascular defects several optical methods of imaging for preclinical/clinical assessment have been developed so far. However, they have some limitations for outcoming resolution and user satisfaction level compared to its cost. A hyperspectral imaging system has shown a wide range of vascular characteristics associated with hypervascularity, aberrant angiogenesis or abnormal vascular remodeling in many diseases. This vascular characteristic is considered as a key component to diagnose and detect a type of disease as evidenced by them.

A Simple Multispectral Imaging Algorithm for Detection of Defects on Red Delicious Apples

  • Lee, Hoyoung;Yang, Chun-Chieh;Kim, Moon S.;Lim, Jongguk;Cho, Byoung-Kwan;Lefcourt, Alan;Chao, Kuanglin;Everard, Colm D.
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • Purpose: A multispectral algorithm for detection and differentiation of defective (defects on apple skin) and normal Red Delicious apples was developed from analysis of a series of hyperspectral line-scan images. Methods: A fast line-scan hyperspectral imaging system mounted on a conventional apple sorting machine was used to capture hyperspectral images of apples moving approximately 4 apples per second on a conveyor belt. The detection algorithm included an apple segmentation method and a threshold function, and was developed using three wavebands at 676 nm, 714 nm and 779 nm. The algorithm was executed on line-by-line image analysis, simulating online real-time line-scan imaging inspection during fruit processing. Results: The rapid multispectral algorithm detected over 95% of defective apples and 91% of normal apples investigated. Conclusions: The multispectral defect detection algorithm can potentially be used in commercial apple processing lines.