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Abstract
The objective of this study was to evaluate the firmness and the sweetness index (SI) of 
tomatoes with a hyperspectral imaging (HSI) technique within the wavelength range of 1000 
- 1550 nm. The hyperspectral images of 95 tomatoes were acquired with a push-broom 
hyperspectral reflectance imaging system, from which the mean spectra of each tomato 
were extracted from the regions of interest. The reference firmness and sweetness index of 
the same sample was measured and calibrated with their corresponding spectral data by 
partial least squares (PLS) regression with different preprocessing methods. The calibration 
model developed by PLS regression based on the Savitzky–Golay second-derivative 
preprocessed spectra resulted in a better performance for both the firmness and the SI of the 
tomatoes compared to models developed by other preprocessing methods. The correlation 
coefficients (Rpred) were 0.82, and 0.74 with a standard error of prediction of 0.86 N, and 0.63, 
respectively. Then, the feature wavelengths were identified using a model-based variable 
selection method, i.e., variable importance in projection, from the PLS regression analyses. 
Finally, chemical images were derived by applying the respective regression coefficients on 
the spectral image in a pixel-wise manner. The resulting chemical images provided detailed 
information on the firmness and the SI of the tomatoes. The results show that the proposed 
HSI technique has potential for rapid and non-destructive evaluation of firmness and the 
sweetness index of tomatoes.

Keywords: firmness, hyperspectral imaging, partial least squares regression, 
sweetness index, tomato

Introduction

The tomato (Solanum lycopersicum) is one of the most important fruits in the world, with a total 
production that increased from 83.2 million ton in 1994 to 170.8 million ton in 2014 (FAOSTAT, 
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2017). It is considered healthy on account of its high lycopene content, which is a natural antioxidant, as well as β-carotene, 
vitamin C, and vitamin E (Rahman et al., 2017). Currently, consumers are willing to pay premium prices for a superior 
quality product. For tomatoes, this relates to a good appearance (e.g., color and size), desired texture (firmness), flavor (e.g., 
soluble solid content and acidity), and aroma (Huang et al., 2017). The surface color of the tomato changes with maturity, 
which also influences the texture and flavor.

In practical situations, tomato firmness is often used as the degree of ripeness for harvested fruits, which determines the 
postharvest quality and shelf life. However, heterogeneous fruit quality is encountered on account of the firmness variation 
of harvested fruits, which requires different postharvest handling procedures (Kienzle et al., 2012). Moreover, tomato flavor 
is dependent on the sugar and acid content. High sugars and relatively high acids are required for the best flavor. High acids 
and low sugars will produce a sour tomato, while high sugars and low acids will result in a tasteless tomato (Agbemavor et 
al., 2014). Thus, soluble solid content (SSC) and total titratable acidity (TA) are the main components that are responsible for 
the tomato flavor and properties that are most likely to align with the consumer perception of the internal quality. Therefore, 
it is necessary to measure these qualitative attributes from whole samples, which is very useful for producers, processors, and 
distributors to ascertain the quality of tomatoes. Currently, traditional analytical methods are used to analyze these qualitative 
attributes. These methods are costly and time-consuming as a result of the multiple steps needed and the use of hazardous 
reagents (Toledo-Martin et al., 2016; Lim et al., 2017). Moreover, traditional methods are destructive and consequently 
enable quality control to be performed only in a limited section of the fruit, rather than in the entire individual fruit (Lee et al., 
2017; Lee et al., 2018).

In hyperspectral imaging (HSI), imaging and spectroscopy technologies are combined into a single system, thus 
simultaneously providing spectral and spatial information about a product (Ahmed et al., 2017; Qin et al., 2017). HSI shows 
considerable promise for non-destructive analysis of horticultural and food products, and it is ideally suited to the requirements 
of the agro-food industry in terms of quality control (Mo et al., 2017). To date, HSI has been used to measure the firmness of 
the apple (Noh and Lu, 2007; Mendoza et al., 2011; Wang et al., 2012; Zhu et al., 2013), peach (Lu and Peng, 2006), blueberry 
(Leiva-Valenzuela et al., 2013), strawberry (Tallada et al., 2006), banana (Rajkumar et al., 2012), kiwifruit (Zhu et al., 2017), 
tomato (Huang et al., 2017), and mango (Servakaranpalayam, 2006; Rungpichayapichet et al., 2017). Similar to firmness, the 
assessment of the acid and soluble solid content (SSC) has also been conducted using the HSI systems for fruits such as the 
apple (Noh and Lu, 2007; Mendoza et al., 2011; Zhu et al., 2013), kiwifruit (Guo et al., 2016), banana (Rajkumar et al., 2012), 
strawberry (ElMasry et al., 2007), blueberry (Leiva-Valenzuela et al., 2013), tomato (Huang et al., 2017; Rahman et al., 2017), 
bell pepper (Schmilovitch et al., 2014), and grape (Baiano et al., 2012; Nogales-Bueno et al., 2014).

Most studies have used HSI systems with the scatter mode for firmness, SSC, and acidity determination. Therefore, the 
prediction results of fruit firmness, SSC, or acidity must be improved because the hyperspectral scattering images contain a 
considerable amount of redundant information in hundreds of spectral wavelengths. Moreover, minimal attention has been 
paid to determining the firmness, SSC, and acidity based on a variable selection method and robust calibration models. The 
short-wave infrared (IR) region (750 and 1900 nm) in the electromagnetic spectrum is associated with the vibration and 
combination overtones of O-H, C-H, and N-H bonds, which are the primary structural components of organic molecules 
(Williams and Norris, 2001). Thus, the application of HSI in the spectral range of 1000 - 1600 nm has potential to predict the 
firmness and sweetness index (SI; ratio of TA and SSC) in tomatoes using a variable selection method. Therefore, the 
objectives of the present study are to examine the feasibility of predicting the firmness and SI of tomatoes using HSI, and to 
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establish calibration models based on a variable selection method that enables the quality of tomatoes to be predicted in a 
non-destructive manner.

Material and Methods

Tomato samples

A total of 95 fresh, fully matured tomatoes that were uniform in size and color, and were free from damage, were purchased 
from a local supermarket in Daejeon city, Republic of Korea. These tomato samples weighed 102 ± 12 g on average and 
measured an average of 60 ± 3 cm in length on the major axis, and 50 ± 4 cm in width on the minor axis. All samples were 
stored in a refrigerator at 10°C and 85% RH until the experiments were conducted. Prior to the experiment, the tomato 
samples were moved from the refrigerator to a laboratory with an ambient temperature of 20°C and held there for 4 h to avoid 
any potential cross-effects arising from the storage temperature on the measurements.

Hyperspectral image system

The tomato images were acquired in the reflectance mode using a push-broom HSI system with a diffuse lighting system, 
as described by Rahman et al. (2017). The system consisted of a line-scan image spectrograph (Headwall Photonics, 
Fitchburg, MA, USA) that covered the spectral range of 1000 - 2500 nm with a 7.5-nm spectral resolution, mercury cadmium 
telluride (MCT) detectors to detect the radiation reflected back from the samples, and a high-performance camera with a 
detector with a size of 320 × 256 pixels (Headwall Photonics, Fitchburg, MA, USA). It also included a 1.4/25 C-mount lens 
(Navitar, Inc., Rochester, NY, USA), translation stage, and computer-supported with image acquisition software for 
controlling the camera and acquiring images. The tomato samples were illuminated with a diffused light provided by four 
tungsten-halogen (Light Bank, Ushio Inc., Tokyo, Japan) light sources with fiber optics (each 100 W, 12 V) that were located 
at the circumference of a diffusing dome at equal distances from one another. The samples were randomly placed on a 
sample stage 40 cm from the HSI system and the image was acquired by scanning each sample line by line as it moved 
through the system.

Image calibration

The raw hyperspectral images were calibrated to obtain relative reflectance images to remove the noise generated by the 
device and the effects of uneven light-source intensities. To calibrate the raw images, a white (W) reference image with 
approximately 100% reflectance and a dark (D) reference image with approximately 0% reflectance were captured. The 
white reference image was acquired from a white Teflon calibration tile under the same condition asthe raw image, while the 
dark reference image was obtained by turning off the light source along with completely closing the lens of the camera with 
its opaque cap. These reference images, W and D, were then used to convert raw reflectance images (R0) to relative reflectance 
images (R)—which are also known as calibrated hyperspectral or corrected images—according to the following equation:

R W D
R D0= -

- 		 	 	 	 	 	 	 	 	 	 (1)
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The corrected images were used as the basis for subsequent analysis to extract spectral information and for effective 
wavelength selection, prediction, and visualization purposes.

Extraction of spectral data 

The calibrated hyperspectral image was segmented by using a simple threshold value as the average value of the background 
and tomato pixels to remove the background effect and visualize only the tomato pixels. Then, the reflectance spectrum from 
the six different parts of the tomato image using a 10 × 10 pixel square area was computed by averaging the spectral value 
of all six parts. Accordingly, only one mean spectrum was produced for each sample, given that the reference firmness and 
SI values from the laboratory analysis produced only one value per sample, which was the average over the entire sample. 
The same routines were repeated for all tested samples; thus, a total of 95 mean reflectance spectra, representing 95 analyzed 
tomato samples, were extracted and saved, respectively. Owing to the low signal-to-noise (S/N) ratio performance stemming 
from the inefficiencies of the lighting system at certain wavelength regions, e.g., the low light output above 1550 nm, the 
spectra were limited to the 1000 - 1550 nm range, which the relative intensity is greater than 0.05. Background segmentation 
and extraction of spectral data from the hyperspectral images were programmed using MATLAB software (version 8, 
MathWorks Inc., Natick, MA, USA).

Reference analyses of quality attributes

After image acquisition, the firmness and SI of each sample were measured. The firmness of the tomato was measured 
using a Universal Instron Texturometer (Model 3343, single-column, Instron Corp., Norwood, MA, USA) to perform 
puncture tests using a 10 mm diameter flat-face probe and a 500 N load cell at a speed of 10 mm/min. The measurements 
were performed in the equatorial region for each fruit. The maximum force (N) was recorded to penetrate the tomato and was 
attributed to the fruit firmness.

Immediately after conducting the firmness measurements, each tomato fruit was juiced by using a manual stainless-steel 
squeezer, and the resultant tomato juice was filtered through a 250 µm metallic sieve. The SI was determined by the following 
procedures outlined by Agbemavor et al. (2014) and expressed according to the following relation:

Sweetness Index (SI)
Total titratable acidity (TA)
Soluble solids content (SSC)

=     	 	 	 	 	 (2)

The SSC of each tomato was measured using a digital refractometer (model: PR-32α; Atago Co., Tokyo, Japan) with a 
scale of 0 - 32% Brix (lowest count = 0.1% Brix) at room temperature (~ 22°C). Approximately 1 mL of the fruit filtrate 
(juice) was applied to the loading point of the refractometer and the %Brix reading was directly obtained from the scale.

The titratable acidity (TA) content was determined according to the method reported by Saad et al. (2016). Approximately 
10 g of juice was diluted in 50 mL of distilled water and titrated against 0.1 N sodium hydroxide (NaOH) in the presence of 
three drops of phenolphthalein until a pH of 8.2 (pink) was attained. The TA content as a percentage of citric acid was 
estimated using the following relation:

Titratable acidity (TA) J
T N C 100# #

#=      	 	 	 	 	 	 (3)
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where T is the amount of NaOH needed to attain pH of 8.2 (mL), C is the milliequivalent weight of citric acid (0.064), N 
is the normality of NaOH (0.1), and J is the amount of juice (g).

Data analysis

Spectral preprocessing

In spectral analysis, various preprocessing techniques are often applied to correct the undesired effects or errors that are not 
associated with the studied responses. In this study, several types of mathematical pretreatment techniques were separately 
employed before calibration modeling to select the optimum technique for the dataset correction, namely normalization 
(mean, maximum, and range normalization), multiple scatter correction (MSC), standard normal vitiate (SNV), and Savitzky–
Golay (first and second derivative). Normalization is a preprocessing technique that is most often used to eliminate the 
scattering effect in the spectra (Rahman et al., 2017). The MSC method is well suited to correct the scattering level of the 
spectra by eliminating the spectral difference of the data (Kandpal et al., 2015). SNV is another spectra correction method 
that removes the slope variation from the spectra generated by the scattering (Barnes et al., 1989; Candolfi et al., 1999). 
Moreover, thederivative technique has been intensively used to remove baseline shift and super-imposed peaks (Rahman et 
al., 2015). In this study, after preprocessing of the spectra, the samples were divided into two sets using the Kennard–Stone 
(KS) sampling algorithm (Kennard and Stone, 1969). A calibration sample set, consisting of 60 samples was used to develop 
the calibration model, and a prediction sample set consisting of 35 samples was used for prediction purposes.

Partial least squares regression model

Partial least squares (PLS) regression is the most common multivariate method for constructing calibration models to 
determine the constituent of interest. It is very efficient for multivariate calibration when the measured variables, such as the 
spectral data, are numerous and highly correlated (Kamruzzaman et al., 2012a). In this study, the preprocessed spectral data 
were linked to the firmness and SI of tomatoes using a PLS regression analysis to develop a calibration model. In the 
development of all the calibration and prediction models, 20 PLS factors were set as the maximums. The performances of 
the developed models were evaluated using several statistical parameters, including the standard error of calibration (SEC), 
coefficient of correlation for calibration (Rcal), standard error of the prediction estimate (SEP), coefficient of correlation for 
prediction (Rpred), and number of latent variables. Generally, a good model should have a high coefficient of correlation (R) 
and a low SEP. In addition, the difference between SEC and SEP is an indicator for evaluatinga good calibration model 
(Rahman et al., 2016). Another important parameter is the number of latent variables that are used to explain the complexity 
of the model (Rahman et al., 2015).

Feature wavelength selection

Because of the high spectral resolution of HSI systems, hyperspectral images usually contain an immense amount of 
spectral data, resulting in a large number of wavelength variables. In principle, selecting the characteristic wavelengths and 
eliminating uninformative ones can produce better and simpler prediction models. Indeed, the removal of redundant, 
irrelevant, and noisy wavelengths can typically enhance the models in terms of accuracy and robustness, while also reducing 
their complexity (Kamruzzaman et al., 2013; Kandpal et al., 2016; Zhu et al., 2016). In this study, the variable importance in 
projection (VIP) was applied to the best-preprocessed calibration data set to select the optimum wavelengths for evaluating 
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the firmness and SI of tomatoes using the minimum number of wavebands. The VIP score for the j-th variable can be defined 
as:

VIP
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where VIP is the variable importance for the projection (dimensionless), j denotes a specific wavelength (nm), P is the 
number of wavelengths (dimensionless), h is the number of latent variables (dimensionless), Z is the fraction of variance in 
the prediction explained by the latent variable (dimensionless), and W is the loading weight (dimensionless).

The VIP score verifies the impacts of the various wavelengths on predictions. More specifically, the higher the VIP score 
is, the more important is the response variable as a predictor. The variables with VIP scores greater than 1.0 are highly 
influential; those with VIP scores lower than 0.8 are insignificant as predictors (Wold et al., 2001; Steidle Neto et al., 2017). 
Finally, a PLS regression model was developed for predicting firmness and SI content on the basis of the VIP scores using 
these feature wavelengths.

Image visualization and prediction map

Prediction maps of firmness and SI were generated using tomato halves from the equatorial axis for showing internal 
composition by applying weighted regression beta coefficients (BW) yielded by the PLS-VIP regression model to each pixel 
with its own corresponding spectrum. The prediction result of each pixel was displayed and plotted according to the 
constituent of the sample based on its spectral signature to provide the distribution gradient in the sample (Rungpichayapichet 
et al., 2017). The spatial distributions of firmness and SI were illustrated by color gradients, which were used to depict the 
respective values in the fruit samples. The following equation can be used to develop the prediction map:

Prediction map I R Ci ii 1

n= +
=
{ 	 	 	 	 	 	 	 	 (5)

where Ii is the i-th image of n reflectance spectral images, Ri is the BW derived from the PLS–VIP regression model, and 
C is the constant of the PLS–VIP regression model. All image-processing steps required for visualization purposes were 
performed using MATLAB software (version 8, MathWorks, Inc., MA, USA).

Results and Discussion

Spectral profile characteristics 

Fig. 1 shows the average relative reflectance spectra and standard deviation (SD) with the resulting second-derivative 
spectral profile at the spectral range of 1000 - 1550 nm using 74 bands (variables), which is similar to previous studies (He et 
al., 2005; Rahman et al., 2017). These spectra regions were sensitive to the concentrations of organic materials, which 
involved the responses of molecular bonds C-H, O-H, and N-H. The water content contained the bond O-H, which is 
responsible for fruit firmness. In the spectra, the absorption features (valleys) are observed at around 1190 nm and 1450 nm, 
corresponding to the absorption maxima of water (Penchaiya et al., 2009). Moreover, the SI is the product of SSC and TA of 
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fruits and also contains bonds C-H, C-O, and C-C. However, their absorption peaks overlap in several parts of the spectral 
region.

In Fig. 1, it is observed that the absorption peak at 1190 nm is likely attributed to the C-H stretching the second overtone 
from fructose, sucrose, and glucose (Guo et al., 2016). In addition, the small absorbance trend at 1350 - 1500 nm maybe 
associated with sucrose, fructose, and glucose in fruit. However, these reflection peaks are usually located in the wide spectral 
band. Therefore, those key wavelengths that are helpful to predict firmness and the SI of tomatoes cannot be directly 
identified.

Statistics of measured samples

The descriptive statistics for the quality attributes (firmness and SI) determined by the standard methods of the two sample 
sets are summarized in Table 1. A relatively high variability covering a large scope was anticipated in firmness, which was 
beneficial to developing a robust calibration model. It may be assumed that the moisture content variation among the samples 
resulted in the difference in firmness. Nevertheless, the measured SI of tomatoes showed the smallest variation with a 
considerable range, which was likely a consequence of the naturally low levels of organic acids in tomatoes.

PLS regression models using full spectra

The PLS regression for prediction of firmness and SI are summarized in Table 2. A good regression correlation coefficient 
using different preprocessing methods was obtained in the calibration set, with Rcal ranging from 0.90 to 0.93 (SEC = 0.57 to 

Table 1. Statistics of quality parameters for tomato measured by standard methods.

Items Firmness (N) SI (a.u.)
Calibration Prediction Calibration Prediction

No of samples 60 35 60 35
Maximum value 11.79 10.11 9.62 8.81
Minimum value 4.05 4.55 7.40 7.19
Mean ± SD 7.26 ± 1.56 6.49 ± 1.42 8.18 ± 0.56 7.24 ± 0.83
SI, sweetness index; a.u., arbitrary unit.

Fig. 1. The average relative reflectance spectra and standard deviation (SD) with resulting 2nd derivative 
spectral profile for tomato.
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0.69 N) for firmness and Rcal from 0.81 to 0.86 (SEC = 0.29 to 0.33) for SI, respectively. When the model was used to predict 
the samples, the performances showed that the values of Rpred with different preprocessing methods varied from 0.62 to 0.82 
for firmness and from 0.31 to 0.74 for SI content in tomatoes. The relatively low correlation coefficients for SI prediction 
could be attributed to the lack of variations in the SI among the tomato samples.

As shown in Table 2, the firmness and SI have better results for the Savitzky–Golay second-derivative preprocessing 
method, with Rpred  = 0.86 (SEP = 0.86 N) for the firmness parameter and Rpred = 0.74 (SEP = 0.63) for SI, which is consistent 
with the results obtained in previous studies (Camps et al., 2012; Huang et al., 2017; Rahman et al., 2017). Specifically, the 
PLS regression model appears to be acceptable on account of only eight factors (LVs) for firmness and the three factors (LVs) 
for SI that were used in the calibration model.

Selection of the feature wavelengths 

It was necessary to reduce the wavelengths owing to the computational burden and to speed up the prediction and 
visualization process. In fact, the wavelength reduction is especially desirable for the development of simple imaging systems 
for real-time applications. The reduced number of wavelengths can help decrease the time required to acquire and process 
each hyperspectral image (Kamruzzaman et al., 2012b). In the present study, the VIP scores resulting from the best 
preprocessing PLS regression model were used to develop a robust model by selection of feature-related wavelengths for 
firmness and SI of tomatoes. The VIP scores indicated the significance of specific wavelengths for the firmness and SI 
content of the samples. The performance of the developed model by PLS regression depended largely on the cut-off value of 
the VIP scores. Generally, the “greater-than-one” rule is used to select the feature wavelengths (Andersen and Bro, 2010). In 
this study, we chose a cut-off value of one, i.e., the number of selected wavelengths for the PLS model given that the 
maximum allowable number is one (Fig. 2). Because one objective of this work was to minimize the number of wavelengths 
as much as possible, a cutoff value of onewas used, and 18 and 24 optimal wavebands were selected from all 74 wavebands 
for the firmness and SI of the tomatoes, respectively.

In Fig. 2(a), it is observed that the most intensive absorption occurs around 1050 - 1150 nm, a region that relates to the first 
O-H stretching overtone (Büning-Pfaue, 2003). It is often applied in the quantitative analysis of high water content in fruits, 
the latter of which is responsible for fruit firmness. SI represents the content of organic molecules and is thus associated with 
the peaks arising from bonds, such as C-H, O-H, C-O, and C-C. Fig. 2(b) shows the apparent strong absorption peaks at 1050 
- 1150 nm and - 1450 nm, which are associated with a combination of the second overtone of C-H stretching, the first 

Table 2. Results of PLS regression for firmness and SI with different preprocessing techniques.

Preprocessing method Firmness (N) SI (a.u.)
Rcal

x SEC Rpred
x SEP LVs Rcal

x SEC Rpred
x SEP LVs

Normalization 0.93 0.57 0.62 2.10 9 0.85 0.30 0.37 0.81 7
S-G first derivativey 0.91 0.65 0.79 0.98 9 0.81 0.33 0.73 0.58 4
S-G second derivativey 0.92 0.60 0.82 0.86 8 0.84 0.31 0.74 0.63 3*
MSC 0.90 0.69 0.78 0.99 6 0.86 0.28 0.31 0.79 3
SNVz 0.90 0.68 0.75 1.21 5 0.85 0.29 0.35 0.79 5
SI, sweetness index; SEC, standard error of calibration; SEP, standard error of the prediction estimate; LVs, Latent 
variables; S-G, Savitzky-Golay; MSC, Multiple Scatter Correction; a.u., arbitrary unit.
xRcal and Rpred are the correlation coefficient of calibration and prediction respectively.
yNumber of segments: 11 and polynomial order: 2.
zStandard Normal Variate; SEC and SEP are the standard error of calibration and prediction respectively.
*Best model.
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overtone of -OH of the carboxylic acid group (Dong et al., 2013) and overtones of O-H stretching in H2O, respectively (Liu 
et al., 2010). Moreover, other detected specific absorptions relate to -CH=CH- bonds, with peaks observed between 1090 and 
1120 nm, as shown in Fig. 2(b) (Su and Sun, 2016). Thus, we may conclude that the model developed using these selected 
wavelengths should be more robust and efficient for predicting the firmness and SI content of tomatoes.

PLS regression model using feature wavelengths

As a consequence of the previous analyses, the selection of feature wavelengths prominently reduced the number of 
wavelengths. The selected wavelengths were then applied to establish the calibration models instead of the full spectra using 
PLS regression. To accurately predict the firmness and SI of tomatoes and acquire more information, we applied the best 
preprocessing method (S-G second derivatives) for developing the PLS regression model. The selected feature wavelengths 
are displayed in Fig. 3. In these scatter plots, the ordinate and abscissa axes represent the predicted and measured fitted values 
of the corresponding parameters. The model shows very satisfactory behavior in terms of the correlation between the 
measured and predicted firmness and SI contents of tomatoes.

Fig. 2. Selection of feature wavelengths by VIP scores for (a) firmness and (b) SI of tomatoes. VIP, variable 
importance in projection; SI, sweetness index. 
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The PLS regression model was developed using the selected wavelengths (PLS-VIP), and the results using full wavelengths 
are given in Table 3. As shown in Table 3, the performance of the PLS regression model developed using the selected 
wavelengths for firmness prediction is slightly degraded (Rpred, 0.76 versus 0.82; SEP, 1.01 N versus 0.86 N) compared to the 
model developed using full wavelengths. However, the number of variables is reduced by 75.68% (from 74 to 18) and the 
number of latent variables is also reduced (from 8 to 4), which helps to minimize the complexity of the model. In the case of 
SI prediction, the model developed using the selected variables shows good performance compared to that developed using 
the full spectral range of 74 variables. The PLS regression model developed using selected wavelengths (PLS-VIP) predicts 
the SI content of tomatoes with Rpred of 0.81, SEP of 0.33, and the number of latent variables of two. These values are 0.74, 
0.63, and 3, respectively, using the full-range spectra. It is evident that the performance of the PLS-VIP model is comparable 
to that of the model developed with the full spectra, even though 67.6% of the variables are eliminated. These results 
demonstrate that a calibration model for the prediction of firmness and SI content of tomatoes based on HSI was successfully 
developed and validated.

Visualization of quality attributes

The above-described results of modeling were all based on the averaged spectra of each intact tomato hyperspectral image. 
It is known that each pixel in the hyperspectral image has its own spectrum, and this spectrum of an individual pixel in a 
sample can be used to visualize the chemical constituents. In this study, the BWs obtained from the PLS regression model 
developed using selected wavelengths were applied to each pixel in a tomato-halve image from the equatorial axis for 
visualizing the tomato firmness and SI content. In Fig. 4 shows the prediction maps of firmness and SI content, where 

Fig. 3. Measured versus predicted (a) firmness and (b) SI estimated by PLS regression model using selected 
wavelengths. SI, sweetness index; a.u., arbitrary unit.

Table 3. Results of PLS, and PLS-VIP based on Savitzky-Golay (S-G) 2nd derivative preprocessing spectra.

Method
Firmness (N) SI (a.u.)

Rcal z SEC Rpred z SEP LVs Rcal z SEC Rpred z SEP LVs
PLS 0.92 0.6 0.82 0.86 8 0.84 0.31 0.74 0.63 3
PLS-VIP 0.80 0.87 0.76 1.01 4 0.88 0.27 0.81 0.33 2
SI, sweetness index; a.u. arbitrary unit; SEC, standard error of calibration; SEP, standard error of prediction; LVs, 
Latent variables; PLS, partial least squares; VIP, variable importance in projection.
z Rcal and Rpred are the correlation coefficient of calibration and prediction respectively.
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different colors correspond to different levels of firmness, as well as the SI content in the sample, which is proportional to the 
spectral differences of the individual pixels.

The usefulness of these prediction maps is demonstrated by their capacity to provide rapid and easy access to the spatial 
distributions of firmness and SI content, whereby the relative concentrations are indicated by the color bars. It is shown in 
Fig. 4 that the firmness of the tomato shows a higher distribution along the peripheral area of the fruit, while it is lower in the 
middle part. In the case of SI content, the lower SI shows a uniform distribution in the tomato periphery and a greater SI 
towards the central part. The differences in the tomato quality, such as the firmness and SI content, may be caused by the 
differences in the exposure of the fruit surface to sunlight during cultivation. The distribution maps obtained in this study 
demonstrate the advantages of HSI that cannot be achieved with either conventional imaging or conventional spectroscopy 
alone.

Conclusions

The feasibility of using HSI techniques in the spectral region of 1000 - 1550 nm for predicting the firmness and SI content 
of tomato fruits using selected feature wavelengths was established in this study. A PLS regression model with different 
preprocessing techniques was developed for the entire spectral range and showed reasonable performance for predicting 
tomato firmness and SI content. The results showed that the firmness and SI contenthad better results for the Savitzky–Golay 
second-derivative preprocessing method, with Rpred = 0.86 (SEP = 0.86 N) and Rpred = 0.74 (SEP = 0.63), respectively. The 
VIP scores were used to select the feature wavelengths associated with the corresponding firmness and SI content. The PLS 
model developed based on feature wavelengths yielded Rpred of 0.76 and 0.81, with SEP of 1.01 N and 0.33 for firmness and 
SI content, respectively. Finally, chemical images were created to visualize the individual quality components of the tomatoes 
in a pixel-wise manner that cannot be obtained with either imaging or conventional spectroscopy. Based on the current 
results, HSI can be considered a potential technique for non-destructive grading of tomatoes based on firmness and SI 
qualities. In the future, additional cultivars with differing shapes, colors, and growing conditions will be examined to develop 
more robust regression models.

Fig. 3. Prediction maps showing the distribution of (a) firmness, and (b) SI in tomato samples.
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