• Title/Summary/Keyword: hypereutectic

Search Result 80, Processing Time 0.028 seconds

Casting Conditions and Solidification Characteristics of Sn-Zn Alloys (Sn-Zn합금의 주조조건과 응고특성)

  • Song, Tae-Seok;Kim, Myung-Han;Jo, Hyung-Ho;Ji, Tae-Gu
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.570-577
    • /
    • 1998
  • An investigation has been conducted to describe solidification characteristics in Sn-Zn binary system and Sn-Zn-Ag ternary system added by Ag produced by the continuous casting process using heated mold as a basic study for developing Pb-free solder materials. To obtain the continuous casting rods with mirror surface and near net shape at higher casting speed, water flow rates must be increased and mold temperature must be lowered. However, surface tearing in the casting rods occured at lower continuous casting speed while break out occured at higher continuous casting speed even if optimum conditions such as water flow rate and heated mold temperature are determined. Primary ${\alpha}Sn$ and eutectic structure in unidirectioally solidified Sn-Zn alloys were finer with increased casting speed. But, directionality may not be expected for primary Zn in hypereutectic Sn-Zn alloy. It was found that the addition of $0.2{\sim}0.8%$ Ag promoted the growth of primary ${\alpha}Sn$ dendrites. The changes of tensile strength and elongation in Sn-Zn binary alloys were not observed while the increase of tensile strength and the decrease of elongation in Sn-Zn-Ag ternary alloys were observed with increased casting speed.

  • PDF

Effect of Casting Processes on the Microstructures and Mechanical Properties of B390 Aluminium Alloy (주조용 B390 알루미늄합금의 조직과 기계적 성질에 대한 각종 주조법의 영향)

  • Han, Yo-Sub;Lee, Ho-In;Kim, Sung-Su;Kim, Jung-Sik
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 1993
  • The effects of casting processes-direct and indirect squeeze casting, permanent mold casting and die casting on the microstructure and mechanical properties were studied for the hypereutectic B390 aluminium alloy. The effects of T5 and T6 heat treatment were also examined. The direct and indirect squeeze casting showed no casting defects such as porosity and shrinkage were observed in permanent mold castings and die castings. The primary silicon phase was refined and homogeneously distributed in the order of indirect squeeze casting, diecasting, direct squeeze casting and permanent mold casting. Depletion of primary silicon phase in die casting surface was disappeared in indirect squeeze casting. Tensile strength of cast and heat treated specimens were increased in the order of direct squeeze casting, permanent mold casting, indirect squeeze casting and die casting. Hardness of indirect squeeze castings was larger than that of other castings. As indirect squeeze casting of B390 aluminium alloy, the time of T6 heat treatment to achieve high strength can be reduced.

  • PDF

Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture (액상-고체입자 혼합물의 응고 시 응고계면에서의 입자의 거동)

  • Lee, Ho-Suk;Lee, Kyu-Hee;Oh, Sung-Tag;Kim, Young Do;Suk, Myung-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.336-339
    • /
    • 2018
  • A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphor-naphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.

A Study on the Relationship between Residual Stress and Wear Peroperty in Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 마모 특성에 미치는 잔류응력의 영향에 관한 연구)

  • Kim, Heon-Joo;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • The effects of modification processing on the refinement of primary Si and the wear behavior of hyper-eutectic Al-Si alloys have been mainly investigated. Refining effects of primary Si in Al-17%Si alloy was more efficient than that of B.390 alloy. Optimum condition of getting the finest primary Si microstructure was when AlCuP modifier is added into the melt at $750^{\circ}C$ and held it at $700^{\circ}C$ for 30 minutes. Wear loss in the specimens of as-cast condition decreases as the size of primary Si decreases, in the order of B.390 alloy, B.390 alloy with AlCuP addition, Al-17%Si alloy and Al-17%Si alloy with AlCuP addition. Wear loss in the aged condition of Al-17%Si alloy, B.390 alloy and B.390 alloy with AlCuP addition decreased due to the increase of compressive residual stress in the matrix by the aging treatment. While, wear loss increased in the aged specimens of Al-17%Si alloy with AlCuP addition and Hepworth addition in which compressive residual stress decreases by the aging treatment. Therefore, it is assumed that higher compressive residual stress in the matrix can reduce the wear loss in composite materials such as hyper-eutectic Al-Si alloys.

  • PDF

Orientation Measurement and Related Mechanical Properties of Directionally Solidified NiAl/$Ni_3Al$ Two-Phase Alloys (일방향응고된 NiAl/$Ni_3Al$ 2상합금의 방향성 측정 및 기계적 특성 평가)

  • Lee, Hye-Jung;Park, No-Jin;Choi, Hwan;Lee, Je-Hyun;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.96-103
    • /
    • 2010
  • $Ni_3Al$ is known as a good high temperature structural material because of high yield strength at ambient temperature. However, it is too brittle to use as a structural material because of their weak grain boundary. In this work, orientation measurement and related mechanical properties of directionally solidified NiAl/$Ni_3Al$ two-phase alloys with various compositions (Ni-23~27 at.%Al) were investigated for developing multi-phase DS-processed alloys with the growth rates of 10, 50 and 100 ${\mu}m/s$ in a modified Bridgeman type furnace. It was found that the multi-phase microstructures such as the $\gamma$ dendrite +${\gamma}'$ matrix duplex microstructure was formed in the hypoeutectic composition of 23 at.%Al, $\beta$ dendrite +${\gamma}'$ matrix duplex microstructure in the hypereutectic composition of 26 and 27 at.%Al. And ${\gamma}'$ single phase was formed in the composition of 24.5 and 25 at.%Al. The hypoeutectic alloy including $\gamma$ dendrites with ${\gamma}'$ matrix showed a large elongation of over 70% at room temperature. However, the room-temperature tensile elongation decreased with increasing Al contents because the volume fraction of brittle $\beta$ dendrites in the ductile ${\gamma}'$ matrix increased.

Microstructural refinement of hypereutectic Al-Si alloys for semi-solid state processing (반고상 성형을 위한 과공정 Al-Si 합금의 조직 미세화)

  • 김인준;김도향
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.94-97
    • /
    • 1997
  • 금속을 반고상 상태에서 성형하기 위하여 미세조직학적 거동을 밝히기 위해, 본 연 구에서는 높은 비강도, 내마모성을 가진 과공정 Al-Si 합금을 반응고 가공하였을 때의 미세 조직과 상온 가공 후 반고상 온도로 일정시간 유지하였을 때의 미세조직을 관찰하였다. 일 반주조시의 개량 원소 P과 Sr을 첨가하였으며 쐐기형 주조재, 압연재, Si 입자강화 Alrl 복 합재료를 반고상 상태로 가열한 미세조직을 관찰하여 초정 Si입자의 형상 변화를 관찰하였 다. 반응고 교반시 초기에는 P과 Sr의 첨가에 의해 초정 Si입자가 미세화 되었으나 교반이 지속되어 가면서 이러한 경향은 감소하였으며 구상에 가까운 형태로 변화 하였는데, 이는 교반이 지속되면서 첨가 원소의 효과보다 교반 자체의 미세조직 변화 기구에의 의존도가 높 아지기 때문인 것으로 사료된다. 냉각속도를 달리한 쐐기 형상에서의 금형에서 주조된 미세 조직을 관찰한 결과 냉각속도가 느릴 때에만 첨가원소의 영향이 나타났으며, 반고상 온도 유지 후 초정 크기에는 큰 변화가 없었으나 $\alpha$-halo가 형성되고 미세한 Si입자가 생성되었 다. 이는 입자 크기의 성장에 따른 주위의 농도구배로 인해 생성된 것으로 사료된다. 압연시 첨가원소는 핵생성과 재결정을 촉진시켜 초정 Si의 크기를 크게 감소시켰다. 반용융 처리시 초정 Si입자는 약간 성장하였으며, $\alpha$-halo도 생성되었다. 압출한 시료를 반용융 처리한 경 우 Si입자의 형상 변화는 거의 없었으며, Si입자에 형성되어 있던 산화막이 기지와 초정 Si 압자간의 확산장벽으로 작용하여 $\alpha$-halo가 거의 생성되지 않았다. 반응고 교반시 미세조직 변화 기구로는 취성파괴, 합체, 마모를 제안하였으며, 각 공정에서의 초정 Si결정의 크기를 비교하였을 때 45$\mu\textrm{m}$ 이하의 분말을 섞어 압출하였을 때 가장 작은 초정 Si입자 크기를 얻음 을 볼 수 있었다.

  • PDF

Hardening Characteristics of Aluminum Alloy Surface by PTA Overlaying with Metal Powders (II) -Hardening charactersteristics and wear resistance of thicker surface alloyed layer- (플라즈마분체 오버레이법에 의한 알루미늄합금 표면의 경화특성에 관한 연구( II ) -후막 표면 합금화층의 경화특성과 내마모성-)

  • ;中田一博;;;松田福久
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.102-109
    • /
    • 1994
  • The thick and hard alloyed layer was formed on the surface of Aluminum Cast Alloy(AC2B) by PTA overlaying process with Cr, Cu and Ni metal powders under the condition of overlaying current 150A, overlaying speed 150mm/min and different powder feeding rate 5-20g/min. The characteristics of hardening and were resistance of alloyed layer have been investigated in relation to microstructure of alloyed layer. As a result, it was made clear that Cu powder was the most superier one in three metal powders used due to an uniform hardness distribution of Hv 250-350, good wear resistance and freedom from cracking in alloyed layer of which microstructure consisted of hypereutectic. On the contrary, irregular hardness distribution was usually obtained in Cr or Ni alloyed layers of which hardness was increased as Cr or Ni contents and reached to maximum hardness of about Hv 400-850 at about 60wt% Cr or 40wt% Ni in alloyed layer. However the cracking occurred in these alloyed layers with higher hardness than Hv 250-300 at more than 20-25wt% of Cr or Ni contents in alloyed layer. Wear rate of alloyed layer was decreased to 1/10 in Cu alloyed layer and 1/5 or 1/3 in Cr or Ni alloyed layer with same hardness of about Hv 300 in comparison with that of base metal at higher sliding speed.

  • PDF

Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys (과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향)

  • Kim, Chul-Hyun;Joo, Dae-Heon;Kim, Myung-Ho;Yoon, Eui- Pak;Yoon, Woo-Young;Kim, Kwon-Hee
    • Journal of Korea Foundry Society
    • /
    • v.23 no.4
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

Effect of Heat Treatment on the Microstructure and Mechanical Properties for Al-Si Alloyed Powder Material by Gas Atomizing and Hot Extrusion Process (가스 분무 공정에 의해 제조된 Al-Si 합금 분말 압출재의 열처리에 의한 미세조직 및 기계적 특성 변화)

  • Nam, Ki-Young;Jin, Hyeong-Ho;Kim, Yong-Jin;Yoon, Seog-Young;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.421-426
    • /
    • 2006
  • The microstructural and mechanical properties of Al-Si alloyed powder, prepared by gas atomization fallowed by hot extrusion, were studied by optical and scanning electron microscopies, hardness and wear testing. The gas atomized Al-Si alloy powder exhibited uniformly dispersed Si particles with particle size ranging from 5 to $8{\mu}m$. The hot extruded Al-Si alloy shows the average Si particle size of less than $1{\mu}m$. After heat-treatment, the average particle size was increased from 2 to $5{\mu}m$. Also, mechanical properties of extruded Al-Si alloy powder were analyzed before and after heat-treatment. As expected from the microstructural analysis, the heat-treated samples resulted in a decrease in the hardness and wear resistance due to Si particle growth. The friction coefficient of heat-treated Al-Si alloyed powder showed higher value tough all sliding speed. This behavior would be due to abrasive wear mechanism. As sliding speed increases, friction coefficient and depth and width of wear track increase. No significant changes occurred in the wear track shape with increased sliding speed.

Fabrication of Nb-Si-B Alloys Using the Pulverized Nb-T2 Alloy Powder (Nb-T2 합금의 파쇄분말을 사용한 Nb-Si-B계 합금의 제조)

  • Cho, Min-Ho;Kim, Sung-Jun;Kang, Hyun-Ji;Oh, Sung-Tag;Kim, Young Do;Lee, Seong;Suk, Myung Jin
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.299-304
    • /
    • 2019
  • Nb-Si-B alloys with Nb-rich compositions are fabricated by spark plasma sintering for high-temperature structural applications. Three compositions are selected: 75 at% Nb (Nb0.7), 82 at% Nb (Nb1.5), and 88 at% Nb (Nb3), the atomic ratio of Si to B being 2. The microstructures of the prepared alloys are composed of Nb and $T_2$ phases. The $T_2$ phase is an intermetallic compound with a stoichiometry of $Nb_5Si_{3-x}B_x$ ($0{\leq}x{\leq}2$). In some previous studies, Nb-Si-B alloys have been prepared by spark plasma sintering (SPS) using Nb and $T_2$ powders (SPS 1). In the present work, the same alloys are prepared by the SPS process (SPS 2) using Nb powders and hypereutectic alloy powders with composition 67at%Nb-22at%Si-11at%B (Nb67). The Nb67 alloy powders comprise $T_2$ and eutectic ($T_2+Nb$) phases. The microstructures and hardness of the samples prepared in the present work have been compared with those previously reported; the samples prepared in this study exhibit finer and more uniform microstructures and higher hardness.