DOI QR코드

DOI QR Code

Fabrication of Nb-Si-B Alloys Using the Pulverized Nb-T2 Alloy Powder

Nb-T2 합금의 파쇄분말을 사용한 Nb-Si-B계 합금의 제조

  • Cho, Min-Ho (Department of Materials Science and Engineering, Kangwon National University) ;
  • Kim, Sung-Jun (Department of Materials Science and Engineering, Kangwon National University) ;
  • Kang, Hyun-Ji (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Young Do (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Seong (Agency for Defence Development) ;
  • Suk, Myung Jin (Department of Materials Science and Engineering, Kangwon National University)
  • 조민호 (강원대학교 신소재공학과) ;
  • 김성준 (강원대학교 신소재공학과) ;
  • 강현지 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학부) ;
  • 이성 (국방과학연구소) ;
  • 석명진 (강원대학교 신소재공학과)
  • Received : 2019.07.09
  • Accepted : 2019.08.06
  • Published : 2019.08.28

Abstract

Nb-Si-B alloys with Nb-rich compositions are fabricated by spark plasma sintering for high-temperature structural applications. Three compositions are selected: 75 at% Nb (Nb0.7), 82 at% Nb (Nb1.5), and 88 at% Nb (Nb3), the atomic ratio of Si to B being 2. The microstructures of the prepared alloys are composed of Nb and $T_2$ phases. The $T_2$ phase is an intermetallic compound with a stoichiometry of $Nb_5Si_{3-x}B_x$ ($0{\leq}x{\leq}2$). In some previous studies, Nb-Si-B alloys have been prepared by spark plasma sintering (SPS) using Nb and $T_2$ powders (SPS 1). In the present work, the same alloys are prepared by the SPS process (SPS 2) using Nb powders and hypereutectic alloy powders with composition 67at%Nb-22at%Si-11at%B (Nb67). The Nb67 alloy powders comprise $T_2$ and eutectic ($T_2+Nb$) phases. The microstructures and hardness of the samples prepared in the present work have been compared with those previously reported; the samples prepared in this study exhibit finer and more uniform microstructures and higher hardness.

Keywords

References

  1. B. P. Bewlay, M. R. Jackson, P. R. Subramanian and J.-C. Zhao: Metal. Mater. Trans. A., 34 (2003) 2043. https://doi.org/10.1007/s11661-003-0269-8
  2. V. Behrani, A. J. Thom, M. J. Kramer and M. Akinc: Intermetallics, 14 (2006) 24. https://doi.org/10.1016/j.intermet.2005.03.007
  3. T. Murakami, C. N. Xu, A. Kitahara, M. Kawahara, Y. Takahashi, H. Inui and M. Yamaguchi: Intermetallics, 7 (1999) 1043. https://doi.org/10.1016/S0966-9795(99)00017-5
  4. Z. Li and L. M. Peng: Mater. Lett., 62 (2008) 2229. https://doi.org/10.1016/j.matlet.2007.11.056
  5. R. Sakidja, J. H. Perepezko, S. Kim and N. Sekido: Acta Mater., 56 (2008) 5223. https://doi.org/10.1016/j.actamat.2008.07.015
  6. Y. Liu, A. J. Thom, M. J. Kramer and M. Akinc: Processing and Fabrication of Advanced Materials-XI, T. S. Srivatsan and V. A. Ravi (Eds.), ASM International, USA (2003) 258.
  7. S. H. Choo, Y. D. Kim, S. T. Oh, S. Lee, S. S. Ryu and M. J. Suk: Korean J. Met. Mater., 53 (2015) 43. https://doi.org/10.3365/KJMM.2014.53.1.43
  8. S. H. Kim, N. W. Kim, Y. K. Jeong, S. T. Oh, Y. D. Kim, S. Lee and M. J. Suk: J. Korean Powder Metall. Inst., 22 (2015) 426. https://doi.org/10.4150/KPMI.2015.22.6.426
  9. C. A. Nunes, D. M. P. Junior, G. C. Coelho, P. A. Suzuki. A. A. A. Pinto da Silva and R. B. Tomasiello: J. Phase Equilib. Diffus., 32 (2011) 92. https://doi.org/10.1007/s11669-010-9846-x