DOI QR코드

DOI QR Code

Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture

액상-고체입자 혼합물의 응고 시 응고계면에서의 입자의 거동

  • Lee, Ho-Suk (Department of Materials and Metallurgical Engineering) ;
  • Lee, Kyu-Hee (Department of Materials and Metallurgical Engineering) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Young Do (Division of Materials Science and Engineering, Hanyang University) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering)
  • 이호석 (강원대학교 재료금속공학과) ;
  • 이규희 (강원대학교 재료금속공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학부) ;
  • 석명진 (강원대학교 재료금속공학과)
  • Received : 2018.08.14
  • Accepted : 2018.08.20
  • Published : 2018.08.28

Abstract

A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphor-naphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.

Keywords

References

  1. M.-J. Suk and Y.-S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215.
  2. S.-T. Oh, S.-Y. Chang and M.-J. Suk: Trans. Nonferrous Met. Soc. China, 22 (2012) s688. https://doi.org/10.1016/S1003-6326(12)61787-7
  3. S.-T. Oh, W. Lee, S.-Y. Chang and M.-J. Suk: Res. Chem. Interm., 40 (2014) 2495. https://doi.org/10.1007/s11164-014-1659-9
  4. S.-T. Oh, G.-T. Lee, K.-J. Lee and M.-J. Suk: Korean J. Met. Mater., 52 (2014) 219. https://doi.org/10.3365/KJMM.2014.52.3.219
  5. M.-J. Suk and K. Leonartz: J. Crystal Growth, 213 (2000) 141. https://doi.org/10.1016/S0022-0248(00)00357-2
  6. K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
  7. G.-T. Lee, H. G. Seo, M.-J. Suk and S.-T. Oh: J. Korean Powder Metall. Inst., 20 (2013) 253. https://doi.org/10.4150/KPMI.2013.20.4.253
  8. M.-J. Suk, J.-S. Kim and S.-T. Oh: J. Korean Powder Metall. Inst., 21 (2014) 366. https://doi.org/10.4150/KPMI.2014.21.5.366
  9. N.-Y. Kwon, M.-J. Suk and S.-T. Oh: J. Korean Powder Metall. Inst., 22 (2015) 362. https://doi.org/10.4150/KPMI.2015.22.5.362
  10. S.-T. Oh, Y. D. Kim and M.-J. Suk: Mater. Letters, 139 (2015) 268. https://doi.org/10.1016/j.matlet.2014.10.097
  11. D. L. Pavia, G. M. Lampman, G. S. Kriz and R. G. Engel: Introduction to Organic Laboratory Techniques-A Microscale Approach (4th Ed.), Thomson Brooks/Cole, Belmont, CA (2007) 745.
  12. M.-J. Suk and K. Leonartz: J. Crystal Growth, 208 (2000) 809. https://doi.org/10.1016/S0022-0248(99)00457-1
  13. N. O. Shanti, K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 89 (2006) 2444. https://doi.org/10.1111/j.1551-2916.2006.01094.x
  14. G. Gupta, R. Rice and W. Wilcox: J. Colloid and Interface Sci., 82 (1981) 458. https://doi.org/10.1016/0021-9797(81)90387-8
  15. B.-H. Yoon, Y.-H. Koh, C.-S. Park and H.-E. Kim: J. Am. Ceram. Soc., 90 (2007) 1744. https://doi.org/10.1111/j.1551-2916.2007.01670.x
  16. B.-H. Yoon, W.-Y. Choi, H.-E. Kim, J.-H. Kim and Y.-H. Koh: Scr. Mater., 58 (2008) 537. https://doi.org/10.1016/j.scriptamat.2007.11.006
  17. D. R. Uhlmann, B. Chalmers and K. A. Jackson: J. Appl. Phys., 35 (1964) 2986. https://doi.org/10.1063/1.1713142