• Title/Summary/Keyword: hyperelastic model

Search Result 51, Processing Time 0.022 seconds

Vibration Characteristics of Non-pneumatic Tire with Honeycomb Spokes (Honeycomb 스포크 구조를 갖는 비 공기압 타이어의 진동 특성)

  • Jo, Hongjun;Lee, Chihoon;Kim, Kwangwon;Kim, Dooman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.174-180
    • /
    • 2013
  • The vibration characteristic of tire is heavily related to the noise and comfort on driving. Therefore, in this paper, we investigate modal charateristic of non-pneumatic tires with Honeycomb spokes. The modal analysis of non-pneumatic tire is investigated for geometric of non-pneumatic tire(NPT) which is designed according to the cell angle of honeycomb cell. Investigation of natural frequencies and mode shapes of non-pneumatic tire are compared regular type NPT with auxetic type NPT. The analysis is based on the finite element method and used ABAQUS program which is able to analyze of non-linear. The material of NPT is used for the Ogden energy model which is model of hyperelastic material. As a result, natural frequencies and mode shapes of non-pneumatic tires with honeycomb spokes are affected by the angle of honeycomb cell.

Study on Application of Flexible Die to Sheet Metal Forming Process (가변금형의 박판 성형공정 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

Dynamic analysis of a transversely isotropic non-classical thin plate

  • Fadodun, Odunayo O.;Borokinni, Adebowale S.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • This study investigates the dynamic analysis of a transversely isotropic thin plate. The plate is made of hyperelastic John's material and its constitutive law is obtained by taken the Frechect derivative of the highlighted energy function with respect to the geometry of deformation. The three-dimensional equation governing the motion of the plate is expressed in terms of first Piola-Kirchhoff's stress tensor. In the reduction to an equivalent two-dimensional plate equation, the obtained model generalizes the classical plate equation of motion. It is obtained that the plate under consideration exhibits harmonic force within its planes whereas this force varnishes in the classical plate model. The presence of harmonic forces within the planes of the considered plate increases the natural and resonance frequencies of the plate in free and forced vibrations respectively. Further, the parameter characterizing the transversely isotropic structure of the plate is observed to increase the plate flexural rigidity which in turn increases both the natural and resonance frequencies. Finally, this study reinforces the view that non-classical models of problems in elasticity provide ample opportunity to reveal important phenomena which classical models often fail to apprehend.

Biomechanical evaluation of menisectomy using finite element method (유한요소 해석법을 이용한 반월상 연골 절제술의 생체역학적 평가)

  • Bae, Ji-Yong;Park, Jin-Hong;Song, Eun-Kyoo;Park, Sang-Jin;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1471-1472
    • /
    • 2008
  • To analyze biomechanical effects of various types of menisectomy in the knee joint, the contact area and pressure distribution of intact the knee joint and the operated by various menisectomies were studied by using finite element method their results are compared with each other. In this study, the femur, the tibia, the articular cartilage and the menisci were three dimensionally reconstructed using MR Images of healthy knee joint in full extension of 26 years old male. Also, three dimensional finite element model of the knee joint was constructed including the models of ligaments and tendons on the reconstructed three dimensional model. Bones were considered to be rigid, articular cartilage and menisci were considered as homogeneous, isotropic and linearly elastic materials and ligaments and tendons were modeled as hyperelastic materials. Based on the results, the effects of various types of menisectomy on the knee joints are clearly elucidated.

  • PDF

A Study on the Structural Characteristics of the Hollow Casket made of Silicon Rubber (실리콘 중공 가스켓의 구조적 특성에 관한 연구)

  • Lee, Seung-Ha;Lee, Tae-Won;Sim, Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2044-2051
    • /
    • 2002
  • In this paper, the deformed shape, the contact forces and the load-displacement curves of the real hollow gasket made of silicon rubber are analyzed using a commercial finite element program MARC. In the numerical analysis, the silicon rubber is assumed to have the properties of the geometric and material nonlinearity and the incompressibility, and the hyperelastic constitutive relations of that material are represented by the generalized Mooney-Rivlin and Ogden models. The outer frictional contact between the hollow gasket and the groove of rigid container and the inner self-contact of the hollow gasket are taken into account in the course of numerical computation. Experiments are also performed to obtain the material data for numerical computation and to show the validity of the mechanical deformation of the hollow gasket, resulting in good agreements between them.

A Study of Fiber-Reinforced Material Models for the Mechanical Characteristics of Human Annulus Fibrosus (인체의 윤상인대의 역학적 특성 모사를 위한 섬유 강화 모델에 관한 연구)

  • Lim, Jun-Taek;Choi, Deok-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.619-628
    • /
    • 2011
  • Human soft tissues, including muscles, ligaments, skin, and blood vessels, are an interesting subject because damage to them can be observed in everyday life. Besides the lack of available experimental data and the large deformation upon loading, the anisotropic and compressible nature of annulus fibrosus makes it more difficult to find a simple material model. A fiber-reinforced hyperelastic material model is used to determine the stress-strain curves upon uniaxial loading. The energy potential function for annulus fibrosus is composed of three different parts: matrix, fibers, and matrix-fiber interaction, which accounts for the angles between two families of fibers. In this paper, two different types of energy potential function for the matrix are considered, and are inserted into the fiber-reinforced model. The calculated results are compared with the Neo-Hookean model and experimental data, and reasonable agreement is observed overall.

Shape Optimization of an Automotive Wheel Bearing Seal Using the Response Surface Method (반응표면법을 사용한 자동차용 휠 베어링 시일의 형상 최적화)

  • Moon, Hyung-Ll;Lm, Jong-Soon;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2010
  • This paper presents the shape optimization process for the automotive wheel bearing seal lip using the finite element method and the response surface method. First, to predict performance of the bearing seal lip, we used the non-linear finite element analysis. And then, we compared the analysis results with the test results to verify the finite element model. The objective function in optimizing process was obtained from results of the mud slurry test, which is one of many tests for evaluating performance of wheel bearing. After the mud slurry test for the four models which have the similar cross-sectional shape, we measured the wear area of the seal lip and the moisture content in grease. The objective function has been chosen by comparing the results of mud slurry test and characteristics of seal lip, such as contact force, contact area, contact pressure, and interference. Finally, within limited design parameters, we suggested the optimized shape of seal lip, which is expected to improve the wear and the sealing effect of it.

Study on Temperature-Dependent Mechanical Properties of Chloroprene Rubber for Finite Element Analysis of Rubber Seal in an Automatic Mooring System (자동계류시스템 고무 씰 유한요소해석을 위한 고무 소재의 온도별 기계적 특성 연구)

  • Son, Yeonhong;Kim, Myung-Sung;Jang, Hwasup;Kim, Songkil;Kim, Yongjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • An automatic mooring system for a ship consists of a vacuum suction pad and a mechanical part, enabling quick and safe mooring of a ship. In the development of a mooring system, the design of a vacuum suction pad is a key to secure enough mooring forces and achieve stable operation of a mooring system. In the vacuum suction pad, properly designing its rubber seal determines the performance of the suction pad. Therefore, it is necessary to appropriately design the rubber seal for maintaining a high-vacuum condition inside the pad as well as achieving its mechanical robustness for long-time use. Finite element analysis for the design of the rubber seal requires the use of an appropriate strain energy function model to accurately simulate mechanical behavior of the rubber seal material. In this study, we conducted simple uniaxial tensile testing of Chloroprene Rubber (CR) to explore the strain energy function model best-fitted to its experimentally measured engineering strain-stress curves depending on various temperature environments. This study elucidates the temperature-dependent mechanical behaviors of CR and will be foundational to design rubber seal for an automatic mooring system under various temperature conditions.

Numerical Study on Effect of Using Elastic Pads in Flexible Forming Process (가변성형 공정에서 탄성 패드의 영향에 관한 수치적 연구)

  • Heo, Seong-Chan;Seo, Young-Ho;Noh, Hak-Gon;Ku, Tae-Wan;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.549-556
    • /
    • 2010
  • In general, materials that can be used to form elastic pads, such as urethane and rubber, are often used in flexible forming processes by inserting the pads between a blank and flexible die for smoothing the forming surface that is formed by a reconfigurable die. In this study, the effects of the elastic pad on formability in the flexible forming process for sheet metals are investigated by performing numerical simulations. In the simulation, the hyperelastic material model is used, where the urethane elastic pads serve as elastic cushions. Case studies are carried out for elastic materials with different hardness values and thicknesses. The results are used to evaluate formability by comparing the configuration of the deformed blank and its major cross-sectional profiles. It is verified that the elastic pad used in the flexible forming process for sheet materials should be hard and that its thickness should be chosen appropriately.

Estimation of Contact Pressure of a Flat Wiper Blade by Dynamic Analysis (플랫 타입 와이퍼 블레이드의 동적 해석을 통한 누름압 예측)

  • Kim, Wook-Hyeon;Park, Tae-Won;Chai, Jang-Bom;Jung, Sung-Pil;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.837-842
    • /
    • 2010
  • The wiper system of a vehicle is important because it wipes the windshield, thereby enabling drivers to see through the windshield even under conditions of rain and snow. The blade is the key component of the wiper system because it wipes the windshield. When wiper-arm spring causes the blade to be pressed on the windshield optimum performance of wiping can be achieved when appropriate contact pressure is maintained. In this study, a dynamic analysis of the wiper system is carried out. A three-dimensional finite-element model of the wiper system is generated using SAMCEF, a commercial structural dynamic analysis program. The distribution of the contact pressure of the blade in its dynamic state is calculated. The simulation result is compared to the experiment result. Using the results of this study, the contact pressure of the blade can be estimated.