• 제목/요약/키워드: hyperbolic method

검색결과 341건 처리시간 0.024초

수정된 쌍곡선 법을 이용한 장기 침하량 예측 (A Study on the Prediction of Long-Term Settlement by the Modified Hyperbolic Method)

  • Yoo, Han-Kyu;Kim, Jong-Hee
    • 한국지반공학회논문집
    • /
    • 제16권3호
    • /
    • pp.163-172
    • /
    • 2000
  • 최종침하 예측기법들은 분석상 간단명료하고 경제적인 기법이라 현장에서 널리 이용되고 있지만, 현장계측상의 문제들이 다분히 있는 실측치에 크게 의존함으로써 설계단계에서 침하량예측에 분석가의 주관적 판단이 큰 변수로 작용할 수 있으므로 객관성이 결여되는 결점을 안고 있다. 그 중 쌍곡선법(Hypervolic Method)이 가장 널리 쓰이고 있지만, 현장 계측치에 따라 가정 기본식의 선형성이 다소 뚜렷하지 않아 분석가에 따라 해석결과가 다르게 나타날 수 있으므로, 기술 적용상의 어려움과 경제적 비용을 더욱 가중시키는 결과를 초래할 수 있다. 따라서, 본 연구에서는 현장 계측자료 분석에 있어서 대표적으로 널리 적용되고 있는 쌍곡선법의 기본 가정식의 선형성 문제에 주안점을 두어 기본 가정식의 선형성을 확보하고, 그 선형구간을 확장한 새로운 침하예측기법을 제안하였다. 성토완료 직후의 현장 자료를 배수재가 설치된 지역과 배수재가 설치되지 않은 지역으로 구분하여 최종 1차 압밀침하량, 수직압밀계수 등을 기존예측기법 및 현장계측자료와 비교 검토하여 제안된 침하예측기법의 적용성을 검증하였다.

  • PDF

PROPER ORTHOGONAL DECOMPOSITION OF DISCONTINUOUS SOLUTIONS WITH THE GEGENBAUER POST-PROCESSING

  • SHIN, BYEONG-CHUN;JUNG, JAE-HUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권4호
    • /
    • pp.301-327
    • /
    • 2019
  • The proper orthogonal decomposition (POD) method for time-dependent problems significantly reduces the computational time as it reduces the original problem to the lower dimensional space. Even a higher degree of reduction can be reached if the solution is smooth in space and time. However, if the solution is discontinuous and the discontinuity is parameterized e.g. with time, the POD approximations are not accurate in the reduced space due to the lack of ability to represent the discontinuous solution as a finite linear combination of smooth bases. In this paper, we propose to post-process the sample solutions and re-initialize the POD approximations to deal with discontinuous solutions and provide accurate approximations while the computational time is reduced. For the post-processing, we use the Gegenbauer reconstruction method. Then we regularize the Gegenbauer reconstruction for the construction of POD bases. With the constructed POD bases, we solve the given PDE in the reduced space. For the POD approximation, we re-initialize the POD solution so that the post-processed sample solution is used as the initial condition at each sampling time. As a proof-of-concept, we solve both one-dimensional linear and nonlinear hyperbolic problems. The numerical results show that the proposed method is efficient and accurate.

Reliability analysis of piles based on proof vertical static load test

  • Dong, Xiaole;Tan, Xiaohui;Lin, Xin;Zhang, Xuejuan;Hou, Xiaoliang;Wu, Daoxiang
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.487-496
    • /
    • 2022
  • Most of the pile's vertical static load tests in construction sites are the proof load tests, which is difficult to accurately estimate the ultimate bearing capacity and analyze the reliability of piles. Therefore, a reliability analysis method based on the proof load-settlement (Q-s) data is proposed in this study. In this proposed method, a simple ultimate limit state function based on the hyperbolic model is established, where the random variables of reliability analysis include the model factor of the ultimate bearing capacity and the fitting parameters of the hyperbolic model. The model factor M = RuR / RuP is calculated based on the available destructive Q-s data, where the real value of the ultimate bearing capacity (RuR) is obtained by the complete destructive Q-s data; the predicted value of the ultimate bearing capacity (RuP) is obtained by the proof Q-s data, a part of the available destructive Q-s data, that before the predetermined load determined by the pile test report. The results demonstrate that the proposed method can easy and effectively perform the reliability analysis based on the proof Q-s data.

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.

초박막에서의 비정상 열전달 (Transient heat transfer in thin films)

  • 배철호;정모
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.1-11
    • /
    • 1998
  • For the analysis of phonon heat transfer within short time and spatial scales, conventional macroscopic heat conduction equations with jump boundary conditions are tried and the results are compared to those of equation of phonon radiative transport(EPRT), which is one of microscopic transport equation. In transient state the macroscopic temperatures show far different behavior from EPRT. In steady state the hyperbolic temperatures with temperature jump at the wall from time relaxation model agrees well with EPRT temperatures. Since EPRT is also an approximate form of microscopic transport equation and there are no experimental results to verify the proposed model in this study, we can not conclude whether the approaching method from this study is valid or not. To the authors' knowledge, there are no experimental results available which can be used to test the validity of these models. Such an experiment, while difficult to conduct, would be invaluable.

풍화암에 근입된 현장타설 말뚝의 하중 전이 특성 (Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks)

  • Jeong, Sang-Seom;Cho, Sung-Han;Kim, Soo-Il
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 말뚝기초 학술발표회
    • /
    • pp.85-106
    • /
    • 2000
  • The load distribution and deformation of drilled shafts subjected to axial loads were evaluated by a load transfer approach. The emphasis was on quantifying the load transfer mechanism at the interface between the shafts and surrounding highly weathered rocks based on a numerical analysis and small-scale tension load tests performed on nine instrumented piles. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Based on the analysis, a single-modified hyperbolic model is proposed for the shear transfer function of drilled shafts in highly weathered rocks. Through comparisons with field case studies, it is found that the prediction by the present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

NONEXISTENCE OF H-CONVEX CUSPIDAL STANDARD FUNDAMENTAL DOMAIN

  • Yayenie, Omer
    • 대한수학회보
    • /
    • 제46권5호
    • /
    • pp.823-833
    • /
    • 2009
  • It is well-known that if a convex hyperbolic polygon is constructed as a fundamental domain for a subgroup of the modular group, then its translates by the group elements form a locally finite tessellation and its side-pairing transformations form a system of generators for the group. Such hyperbolically convex polygons can be obtained by using Dirichlet's and Ford's polygon constructions. Another method of obtaining a fundamental domain for subgroups of the modular group is through the use of a right coset decomposition and we call such domains standard fundamental domains. In this paper we give subgroups of the modular group which do not have hyperbolically convex standard fundamental domain containing only inequivalent cusps.

철근콘크리트 쌍곡냉각탑의 설계 및 해석 (Design and Analysis of Reinforced Concrete Hyperbolic Cooling)

  • 장현옥;민창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.501-506
    • /
    • 2000
  • An iterative numerical computational algorithm is presented to design a plate or shell element subjected to membrane and flexural forces. Based on equilibrium consideration, equations for capacities of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, i.e., for each sampling point, from the equilibrium between applied and internal forces. Based on nonlinear analyses performed in a hyperbolic cooling tower, the analytically calculated ultimate load exceeded the design ultimate load from 50% to 55% for an analysis with relatively low to high tension stiffening, cases $\gamma$=10 and 15. For these cases, the design method gives a lower bound on the ultimate load with respect to Lower bound theorem, This shows the adequacy of th current practice at least for this cooling tower shell case studied. To generalize the conclusion more designs - analyses should be reformed with different shell configurations.

  • PDF

소일네일링 구조물의 수치해석 (Numerical Analysis of Soil Nail System)

  • 유남재;김영길;박병수;이종호
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.115-125
    • /
    • 1999
  • Current design and analyzing methods about soil nailing structures, developed on the basis of results obtained from experiments in laboratory or in field and numerical analyses, have applied different interaction mechanisms between the reinforced nails and the surrounding ground, and this different safety factors against failure have been obtained. They might be proper approached if the assumptions about rigidity of nails and ground conditions are met with actual conditions occurred in field. Otherwise, they would result in designing on analyzing in inappropriate ways so that it is needed to evaluate the validity of them. Therefore, overall behavior and failure mechanism about soil nailing system were investigated by performing numerical method. Using a finite element analysis, parametric studies were made to examine the importance of the various parameters and their effects on the soil nailing system. The numerical technique of FEM, implemented with Hyperbolic constitutive model, was also used to analyze the test results.

  • PDF