• Title/Summary/Keyword: hydroxide

Search Result 2,171, Processing Time 0.033 seconds

The Experimental Study on Electrokinetic Injection Improvement of Low Permeable Ground (저 투수성 지반의 동전기 주입 개량의 실험 연구)

  • Kim, Soo-Sam;Han, Sang-Jae;Kim, Ki-Nyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.99-108
    • /
    • 2006
  • In this study a series of bench scale test are conducted to increase the undrained shear strength of clayey soils using by Electro-kinetic injection stabilization method. The sodium silicate was injected in anode reservoir and its concentration was changed with 500, 1000, 1500, 2000, 2500mM for configuration of applicability of Electro-kinetic injection stabilization method. Also, the treatment time and electric gradient was changed to acquire the optical influence factors. For increasing the shear strength to maximum values, the calcium chloride and aluminium hydroxide, which concentration was changed with 50, 250, 500, 750, 1000mM, were added at anode reservoir for 5 days after the treatment of sodium silicate in 5 days as the 2nd additives. The test of results in determination of sodium silicate concentration show that the undrained shear strength at each point had a tendency to converge into a constant value when the concentration of sodium silicate came to 1000mM and above. The maximum shear strength increasement was 800% compared with initial value. After a series of test, the electric gradient and treatment time for application of electric fielld were 1V/cm and 6 days. In case of 2nd additives test, the concentration for maximum shear strength is 250mM in all additives and the effects of shear strength improvement was developed approximately 20~30% in comparison to addition of single injection material.

Comparative Study on Phenolic Compounds of Cheorwon Onion by Phosphite Treatment (아인산염 처리에 따른 철원양파의 페놀화합물 비교 연구)

  • Kim, Y.B.;Lee, H.J.;Park, C.H.;Kim, D.H.;Koo, H.J.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • The aim of this study was to evaluate the change of phenolic compounds after phosphite treatment on Cheorwon onion. Onion is a perennial plant belonging to the lily family. It is native to Persia of Southwest Asia. It is widely cultivated in the temperate regions of the world. Onion is a good name for the 'Okchong' to drop blood cholesterol and cardiovascular blood flow to increase the prevention of adult diseases. Cheorwon area is inland, but it has high continental climate due to its high altitude. Therefore it is said that the onion cultivated in this region has higher sugar content and higher taste than onion grown in the southern region. Phosphorus components are particularly important ingredients for promoting muscle development. However, if the phosphoric acid content of the soil part is maintained to a large extent until the harvest, the competition of the nutrients tends to cause decay of the root part. Therefore, it is important to improve the quality and shelf life of onion by inducing nutrient balance by applying foliar fertilization method on the reducing phosphorus at harvest time. In this study, acidity was controlled by diluting phosphorous acid(H3PO3) and potassium hydroxide(KOH), followed by leaf surface treatment with phosphite on onion. In this study, the concentration of phosphite was diluted to 500, 1,000, 1,500ppm and sprayed three times over the onion leaves in May 2018 using an atomizer and harvested at the end of June, and the phenolic compounds were analyzed by HPLC. As a result, the content of quercetin, one of the important substances in onion, was phosphite 500ppm(179.70㎍/g), 1,000(150.27), 1,500(105.95). The contents of caffeic acid, p-coumaric acid, ferulic acid, rutin, kaempferol, and sugar content were higher in the treatments than in the control. Therefore, the phosphite does not have a great influence on the growth, but it may play a role as a method of achieving balance with nitrogen in the rainy season by supplying the role of the material catalyst and the water soluble phosphoric acid and the potassium in the influence of the material change.

Synthesis of Fe-doped β-Ni(OH)2 microcrystals and their oxygen evolution reactions (Fe 도핑된 β-Ni(OH)2 마이크로결정 합성과 산소발생반응 특성)

  • Je Hong Park;Si Beom Yu;Seungwon Jeong;Byeong Jun Kim;Kang Min Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.196-201
    • /
    • 2023
  • In order to improve the efficiency of the water splitting system for hydrogen energy production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds (hydroxide, sulfide, etc.) are attracting attention as catalyst materials to replace currently used precious metals such as platinum. In this study, Ni foam, an inexpensive metal porous material, was used as a support and β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the crystal morphology, crystal structure, and water splitting characteristics of β-Ni(OH)2 microcrystals synthesized by doping Fe to improve electrochemical properties were observed, and applicability as a catalyst in a commercial water electrolysis system was examined.

Cellulose Nanocrystals Incorporated Poly(arylene piperidinium) Anion Exchange Mixed Matrix Membranes (셀룰로오스 나노 결정을 도입한 폴리아릴렌 피페리디늄 음이온 교환 복합매질분리막)

  • Da Hye Sim;Young Park;Young-Woo Choi;Jung Tae Park;Jae Hun Lee
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.154-162
    • /
    • 2024
  • Anion exchange membranes (AEMs) are essential components in water electrolysis systems, serving to physically separate the generated hydrogen and oxygen gases while enabling the selective transport of hydroxide ions between electrodes. Key characteristics sought in AEMs include high ion conductivity and robust chemical and mechanical stability in alkaline. In this study, quaternized Poly(terphenyl piperidinium)/cellulose nanocrystals (qPTP/CNC) mixed matrix membrane was fabricated. The polymer matrix, PTP, was synthesized via super-acid polymerization, known for its excellent ion conductivity and alkaline durability. The qPTP/CNC membrane showed a dense and uniform morphology without significant voids or large aggregates at the polymer-nanoparticle interface. The qPTP/CNC membrane containing 2 wt% CNC demonstrated a high ion exchange capacity of 1.90 mmol/g, coupled with low water uptake (9.09%) and swelling ratio (5.56%). Additionally, the qPTP/CNC membrane showed significantly lower resistance and superior alkaline stability (384 hours at 50℃ in 1 M KOH) compared to the commercial FAA-3-50 membrane. These results highlight the potential of hydrophilic additive CNC in enhancing ion conductivity and alkaline durability of ion exchange membranes.

Safety assessments of recombinant DTaP vaccines developed in South Korea

  • Gi-Sub Choi;Kyu-Ri Kang;Seung-Bum Kim;Joon-Hwan Ji;Gyu-Won Cho;Hyun-Mi Kang;Jin-Han Kang
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.155-165
    • /
    • 2024
  • Purpose: Pertussis bacteria have many pathogenic and virulent antigens and severe adverse reactions have occurred when using inactivated whole-cell pertussis vaccines. Therefore, inactivated acellular pertussis (aP) vaccines and genetically detoxified recombinant pertussis (rP) vaccines are being developed. The aim of this study was to assess the safety profile of a novel rP vaccine under development in comparison to commercial diphtheria-tetanus-acellular pertussis (DTaP) vaccines. Materials and Methods: The two positive control DTaP vaccines (two- and tri-components aP vaccines) and two experimental recombinant DTaP (rDTaP) vaccine (two- and tri-components aP vaccines adsorbed to either aluminum hydroxide or purified oat beta-glucan) were used. Temperature histamine sensitization test (HIST), indirect Chinese hamster ovary (CHO) cell cluster assay, mouse-weight-gain (MWG) test, leukocytosis promoting (LP) test, and intramuscular inflammatory cytokine assay of the injection site performed for safety assessments. Results: HIST results showed absence of residual pertussis toxin (PTx) in both control and experimental DTaP vaccine groups, whereas in groups immunized with tri-components vaccines, the experimental tri-components rDTaP absorbed to alum showed an ultra-small amount of 0.0066 IU/mL. CHO cell clustering was observed from 4 IU/mL in all groups. LP tests showed that neutrophils and lymphocytes were in the normal range in all groups immunized with the two components vaccine. However, in the tri-components control DTaP vaccine group, as well as two- and tri-components rDTaP with beta-glucan group, a higher monocyte count was observed 3 days after vaccination, although less than 2 times the normal range. In the MWG test, both groups showed changes less than 20% in body temperature and body weight before the after the final immunizations. Inflammatory cytokines within the muscle at the injection site on day 3 after intramuscular injection revealed no significant response in all groups. Conclusion: There were no findings associated with residual PTx, and no significant differences in both local and systemic adverse reactions in the novel rDTaP vaccine compared to existing available DTaP vaccines. The results suggest that the novel rDTaP vaccine is safe.

Surface Analysis Study on ZIRLO Cladding Hulls Oxidized at Low Temperatures (저온 산화된 ZIRLO 피복관의 표면분석 연구)

  • Jeon, Min Ku;Choi, Yong Taek;Lee, Chang Hwa;Kang, Kweon Ho;Park, Geun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • Surface oxidation behavior of ZIRLO (ZIRconium Low Oxidation) hulls was investigated using an X-ray photoelectron spectroscopy (XPS) technique. The effects of oxidation time (10-336 h at $500^{\circ}C$) and temperature ($400-700^{\circ}C$ for 10 h) were studied. Deconvolution results of the hulls oxidized at $500^{\circ}C$ revealed that a $ZrO_2$ phase appeared after 24 h (11.86%), and an increase in the $ZrO_2$ ratio was observed when the hulls were oxidized for 336 h (17.93%). On the other hand, the ZrO phase which employed 5.68% in the 10 h oxidized sample disappeared when the oxidation time increased to 24 h. The XPS results also showed that an increase in the oxidation temperature resulted in an increase in the ratio of ZrO, which increased from 0 to 5.68, 8.31, and 9.16% when the oxidation temperature increased from 400 to 500, 600, and $700^{\circ}C$, respectively. $ZrO_2$ phase was observed only in the sample that was oxidized at $700^{\circ}C$. The mechanism of ZrO formation was not conclusive, but it was suggested that a formation of hydroxide might have been accelerated at elevated temperatures leading to a formation of a $Zr(OH)_4$ phase. The relationship between the surface oxidation status of the hulls oxidized at $500^{\circ}C$ and their chlorination reaction feasibility was discussed, and it was suggested that the thickness of the oxide layer is an important parameter that determines the chlorination reaction feasibility.

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.

The Preventive Effect of Allergic Inflammation by Induction of Oral Tolerance in a Mouse Model of Chronic Asthma (마우스 만성천식모델에서 경구면역관용 유도에 의한 알레르기 염증의 예방효과)

  • Kim, Jin Sook;Lee, Jung Mi;Kim, Seung Joon;Lee, Sook Young;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Song, Jeong Sup;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.5
    • /
    • pp.425-433
    • /
    • 2004
  • Background : Induction of oral tolerance (OT) has been known to prevent allergic inflammation in acute asthma model within 4 weeks. However it is remained whether induction of OT may effectively prevent allergic inflammation in chronic asthma model over 4 weeks. We observed the effect of induction of OT on allergic inflammation and airway remodeling in chronic asthma model up to 8 weeks. Methods : 5-week-old female BALB/c mice divided into 4 groups-control group, asthma group, low dose OT group, and high dose OT group. To induce oral tolerance mice were fed ovalbumin (OVA) before sensitization with OVA and aluminum hydroxide-1 mg for 6 consecutive days in the low dose OT group and 25 mg once in the high dose OT group. Mice in the asthma group were fed phosphate buffered saline instead of OVA. After sensitization followed by repeated challenge with aerosolized 1% OVA during 6 weeks, enhanced pause (Penh), inflammatory cells, IL-13, and IFN-${\gamma}$ levels in bronchoalveolar lavage (BAL) fluids as well as OVA-specific IgE, IgG1, and IgG2a levels in serum were measured. In addition the degree of goblet cell hyperplasia and peribronchial fibrosis were observed from lung tissues by PAS and Masson's trichrome stain. Results : Both OT groups showed a significant decrease in Penh, inflammatory cells, IL-13, and IFN-${\gamma}$ levels in BAL fluids as well as OVA-specific IgE, IgG1, and IgG2a levels in serum compared with the asthma group (P<0.05). In addition, the degree of goblet cell hyperplasia and peribronchial fibrosis were significantly attenuated in both OT groups compared with the asthma group (P<0.01). Conclusion : These results suggest that induction of OT may effectively prevent allergic inflammation as well as airway remodeling even in chronic asthma model up to 8 weeks.

Comparison of Soil Physicochemical Properties According to the Sensitivity of Forest Soil to Acidification in the Republic of Korea (우리나라 산림토양의 산성화 민감도평가와 그에 따른 토양 이화학적 특성 비교분석)

  • Lee, Ah Lim;Koo, Namin
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • The sensitivity of forest soil to acidification in the Republic of Korea (ROK) was evaluated based on pHH2O, cation exchange capacity (CEC), and base saturation (BS). Sensitivity to acidification was categorized into three grades: adequate level (AL, pH ≧ 4.2, CEC ≧ 15cmol/kg, BS ≧ 15%), caution level (CL, at least one indicator is below AL), and severe Level (SL, all three indicators are below AL). Soil samples were collected from the 65 stationary monitoring plots (40 × 40 ㎢), distributed throughout ROK. Only 19% of soil samples were classified as AL, while 66% and 15% were CL and SL, respectively. The median of pHH2O, CEC, BS, and Ca/Al indicator in AL soils was pH 4.64, 20.7cmol/kg, 29%, and 6.3, respectively. Moreover, BCex (K+, Mg2+, Ca2+) and available phosphorus (AP) concentration compared with a threshold value and molar ratio of BCex and AP to total nitrogen (TN) was high. This indicates that AL soils have a good nutrient condition. The molar Ca/Al ratio, an indicator for toxicity of exchangeable aluminum (Alex), was more than 1, indicating no negative impact of Alex on plant growth. On the contrary, the median of pHH2O, CEC, and BS in SL soils was pH 4.02, 13.2cmol/kg, and 10%, respectively. The Ca/Al index was less than 0.6, which indicates that negative impacts of Alex on plants were high. Furthermore, both the concentration of BCex in SL soils and the BCex/TN ratio were the lowest among the three acidity degrees. This shows that SLsoils can be degraded by soil acidification compared with less acidic soils.

Development and Validation of Analytical Method for Nitroxoline in Chicken Using HPLC-PDA (HPLC-PDA를 이용한 닭고기 중 Nitroxoline 분석법 개발)

  • Cho, Yoon-Jae;Chae, Young-Sik;Kim, Jae-Eun;Kim, Jae-Young;Kang, Ilhyun;Lee, Sang-Mok;Do, Jung-Ah;Oh, Jae-Ho;Chang, Moon-Ik;Hong, Jin-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2013
  • BACKGROUND: Nitroxoline is an antibiotic agent. It is used for the treatment of the second bacterial infection by the colibacillosis, salmonellosis and viral disease of the poultry. When the nitroxoline is indiscreetly used, the problem about the abuse of the antibiotics can occur. Therefore, this study presented the residue analytical method of nitroxoline in food for the safety management of animal farming products. METHODS AND RESULTS: A simple, sensitive and specific method for nitroxoline in chicken muscle by high performance liquid chromatograph with PDA was developed. Sample extraction with acetonitrile, purification with SPE cartridge (MCX) were applied, then quantitation by HPLC with C18 column under the gradient condition with 0.1 % tetrabutylammonium hydroxide-phosphoric acid and methanol was performed. Standard calibration curve presented linearity with the correlation coefficient ($r^2$) > 0.999, analysed from 0.02 to 0.5 mg/L concentration. Limit of quantitation in chicken muscle showed 0.02 mg/kg, and average recoveries ranged from 72.9 to 88.1 % in chicken muscle. The repeatability of measurements expressed as coefficient of variation (CV %) was less than 12 % in 0.02 and 0.04 mg/kg. CONCLUSION(S): Newly developed method for nitroxoline in chicken muscle was applicable to food inspection with the acceptable level of sensitivity, repeatability and reproducibility.