DOI QR코드

DOI QR Code

Comparative Study on Phenolic Compounds of Cheorwon Onion by Phosphite Treatment

아인산염 처리에 따른 철원양파의 페놀화합물 비교 연구

  • Kim, Y.B. (Korea National College of Agriculture & Fisheries) ;
  • Lee, H.J. (Cheorwongun Agricultural Technology Center) ;
  • Park, C.H. (Department of Bio/health Technology, Kangwon National University) ;
  • Kim, D.H. (Korea National College of Agriculture & Fisheries) ;
  • Koo, H.J. (Korea National College of Agriculture & Fisheries) ;
  • Chang, K.J. (Korea National College of Agriculture & Fisheries)
  • Published : 2018.11.30

Abstract

The aim of this study was to evaluate the change of phenolic compounds after phosphite treatment on Cheorwon onion. Onion is a perennial plant belonging to the lily family. It is native to Persia of Southwest Asia. It is widely cultivated in the temperate regions of the world. Onion is a good name for the 'Okchong' to drop blood cholesterol and cardiovascular blood flow to increase the prevention of adult diseases. Cheorwon area is inland, but it has high continental climate due to its high altitude. Therefore it is said that the onion cultivated in this region has higher sugar content and higher taste than onion grown in the southern region. Phosphorus components are particularly important ingredients for promoting muscle development. However, if the phosphoric acid content of the soil part is maintained to a large extent until the harvest, the competition of the nutrients tends to cause decay of the root part. Therefore, it is important to improve the quality and shelf life of onion by inducing nutrient balance by applying foliar fertilization method on the reducing phosphorus at harvest time. In this study, acidity was controlled by diluting phosphorous acid(H3PO3) and potassium hydroxide(KOH), followed by leaf surface treatment with phosphite on onion. In this study, the concentration of phosphite was diluted to 500, 1,000, 1,500ppm and sprayed three times over the onion leaves in May 2018 using an atomizer and harvested at the end of June, and the phenolic compounds were analyzed by HPLC. As a result, the content of quercetin, one of the important substances in onion, was phosphite 500ppm(179.70㎍/g), 1,000(150.27), 1,500(105.95). The contents of caffeic acid, p-coumaric acid, ferulic acid, rutin, kaempferol, and sugar content were higher in the treatments than in the control. Therefore, the phosphite does not have a great influence on the growth, but it may play a role as a method of achieving balance with nitrogen in the rainy season by supplying the role of the material catalyst and the water soluble phosphoric acid and the potassium in the influence of the material change.

본 연구는 다른 지역에 비해 일교차가 큰 철원 지역에서 재배되고 있는 양파에 친환경제제로 사용되는 아인산염을 농도별로 처리하여 생육특성과 페놀화합물 함량의 변이를 알아보기 위해 수행되었다. 그 결과 아인산염 처리 후 양파의 구무게, 너비, 폭과 당 함량에는 큰 영향을 미치지 않았다. 반면 페놀화합물에는 영향을 미쳐 아인산 500ppm을 처리했을 때 벤조산, 카페산, 쿠마린산, 캠페롤, 쿼르세틴 함량이 무처리구보다 다소 높은 함량을 보였다. 따라서 아인산염은 생육에는 큰 영향을 주지는 않았지만 물질 변화에 영향을 미쳐 물질 촉매제 역할과 수용성 인산과 칼리를 공급하여 장마기에 질소와 균형을 이룰 수 있는 방법으로도 큰 역할을 할 수 있다고 사료된다.

Keywords

References

  1. 마경철, 변만호, 방극필, 고숙주, 이용환. (2008). 재배양식에 따른 무화과 역병의 발생 및 환경적 방제. Res. Plant Dis. 14(2) : 107-111.
  2. 이상훈, 윤형묵, 구성철, 이우문, 장재기, 구현정, 장광진, 김연복. (2018). 미네랄 및 호르몬 제제 처리에 따른 당귀의 생육특성 및 Decursin, Decursinol angelate 함량 변화. Korean J. Medicinal Crop Sci. 26(3) : 227-232.
  3. 이기원. (2008). 양파 폴리페놀의 암예방 및 미용개선 효능. 한국식품영양과학회. 39-62.
  4. 성환길, 변성애, 장광진. (2003). 건강식물의 효능과 활용법. 문예마당 p 358
  5. 정범윤. (2013). 양파. 국제농업개발원 p 208
  6. 지형진. (1998). 아인산염의 역병방제 효과 검증. 시험연구보고서(작물보호부편). 농업과학기술원. 233-236.
  7. 통계청. (2018). 마늘, 양파, 보리 생산량 조사결과 보도 자료.
  8. Bektas, Y. and T. Eulgem. (2015). Synthetic plant defense elicitors. Plant Physiol. 5: 804.
  9. Calderon-Montano, J. M., E. BurgosMoron, C. Perez-Guerrero and M. Lopez-Lazaro. (2011). A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chem. 11 (4): 298-344.
  10. Choi, J. H., E. S. Seong and C. Y. Yu. (2016). Growth effect by storage temperature, soil type and treatment chemical of Saururus chinensis (Lour.) Baill. Korean J. Medicinal Crop Sci. 24:458-463.
  11. Formica, J. V. and Regelson, W. (1995). Review of the biology of quercetin and related bioflavonoids. Food and Chem. Tox. 33 (12): 1061-80.
  12. Gayatridevi, S., S. K. Jayalakshmi and K. Sreeramulu. (2012). Salicylic acid is a modulator of catalase isozymes in chickpea plants infected with Fusarium oxysporum f. sp. ciceri. Plant Physiol. Biochem. 52: 154-161.
  13. Kreft, S., M. Knapp and I. Kreft. (1999). Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J. Agri. Food Chem. 47 (11): 4649-52.
  14. Lee, H., Kim, K. U., Son, J. K., Lee, J. E. and Lee, S. C. (2002). Effect of application of plant growth regulator on growth characteristics in Bupleurum falcatum L. Korean J. Medicinal Crop Sci. 10:344-352.
  15. Lee, K. W., N. J. Kang, Y. S. Heo, E. A. Rogozin,, A. Pugliese and M. K. Hwang. (2008). Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer res. 68(3), 946-955.
  16. Lee, K. W. and H. J. Lee. (2006). The roles of polyphenols in cancer chemoprevention. Biofactors 26 (2), 105-121.
  17. Rhee, H. S., H. Y. Cho, S. Y. Son, S. Y. Yoon and J. M. Park. (2010). Enhanced accumulation of decursin and decursinol angelate in root cultures and intact roots of Angelica gigas Nakai following elicitation. Plant Cell, Tissue and Organ Culture. 101:295-302.
  18. Quinde-Axtell, Z. and B. K. Baik. (2006). Phenolic compounds of barley grain and their implication in food product discoloration. J. Agri. Food Chem. 54 (26): 9978-9984.
  19. Zhao, Z. and M. H. Moghadasian. (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 109 (4): 691-702.