• Title/Summary/Keyword: hydrophobic drugs

Search Result 59, Processing Time 0.022 seconds

3D Quantitative and Qualitative Structure-Activity Relationships of the δ -Opioid Receptor Antagonists

  • Chun, Sun;Lee, Jee-Young;Ro, Seong-Gu;Jeong, Ki-Woong;Kim, Yang-Mee;Yoon, Chang-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.656-662
    • /
    • 2008
  • Antagonists of the d -opioid receptor are effective in overcoming resistance against analgesic drugs such as morphine. To identify novel antagonists of the d -opioid receptor that display high potency and low resistance, we performed 3D-QSAR analysis using chemical feature-based pharmacophore models. Chemical features for d -opioid receptor antagonists were generated using quantitative (Catalyst/HypoGen) and qualitative (Catalyst/HipHop) approaches. For HypoGen analysis, we collected 16 peptide and 16 non-peptide antagonists as the training set. The best-fit pharmacophore hypotheses of the two antagonist models comprised identical features, including a hydrophobic aromatic (HAR), a hydrophobic (HY), and a positive ionizable (PI) function. The training set of the HipHop model was constructed with three launched opioid drugs. The best hypothesis from HipHop included four features: an HAR, an HY, a hydrogen bond donor (HBD), and a PI function. Based on these results, we confirm that HY, HAR and PI features are essential for effective antagonism of the d -opioid receptor, and determine the appropriate pharmacophore to design such antagonists.

Polystyrene-b-poly(oligo(ethylene oxide) Monomethyl Ether Methacrylate)-b-polystyrene Triblock Copolymers as Potential Carriers for Hydrophobic Drugs

  • You, Qianqian;Chang, Haibo;Guo, Qipeng;Zhang, Yudong;Zhang, Puyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.558-564
    • /
    • 2013
  • A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b-polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance ($^1H$ NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore, the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b-POEOMA-b-PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

Preparation of PNIPAM Hydrogel Containing Lipoic Acid (리포익산을 함유한 PNIPAM 하이드로젤의 제조)

  • Yoon, Hye-Ri;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.455-460
    • /
    • 2012
  • Poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been studied as an important drug delivery system due to its volume transition or temperature-responsive swelling properties, whose phase separation temperature is similar to the body temperature. However, because of hydrophilic PNIPAM, hydrophobic drugs are difficult to be uniformly loaded in the networks. Antioxidant alpha-lipoic acid (LA) can be prepared as a polymer(polylipoic acid, PLA) by ring opening polymerization, which is hardly developed as a material due to its low molecular weight and easy depolymerization. To overcome this limitation, a hydrophobic active ingredient, LA was reacted with NIPAM into stable hydrogels. Simple thermal radical reaction successfully resulted in a hydrogel (PNIPAM/PLA), which was confirmed by DSC, FTIR, and Raman spectroscopy. The PNIPAM/PLA showed temperature-responsive properties, and their volume swelling decreased with an increase in lipoic acid content. These hydrogels can carry hydrophobic drugs with PNIPAM and the hydrogels could be useful as final drug delivery systems having lipoic acid as an antioxidant.

Dissolution Characteristics of Hydrophobic Drug-Soluble Carrier Coprecipitates(III) -Dissolution Behaviour of Indomethacin from Several Fast Release Solid Dispersions of Indomethacin-

  • Jeon, In-Koo;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.6 no.3
    • /
    • pp.58-69
    • /
    • 1976
  • It is well established that dissolution is freruently the rate limiting step in the gastrointestinal absorpton of a drug from a solid dosage from. The relationship between the dissolution rate and absorption is particularly distinct when considering drugs of low solubility. Consequently, numerous attempts have been made to modify the dissolution characteristics of poorly water soluble drugs. Since dissolution rate is directly proportional to surface area, one may increase the rate by decreasing the particle size of the drug. Levy has considered a number of methods by which a drug may be presented to the GI fludids in finely divided from. The direct method is the utilization of microcrystalline or micronized particles. A second method involves the administration of solutions from which, upon dilution with gastric fluids, the dissolved drug will precipitate in the form of very fine particles. A more unique way of obtaining microcrystalline dispersions of a drug has been ercently suggested by Sekiguchi et al. They have first proposed the formation of a eutectic mixture of a poorly water soruble drug with a physiologically inert, easily soluble carrier. When such systems are exposed to water or GI fluids, the soluble carrier will dissolve rapidly and the finely dispersed drug particles will then be released. It has been suggested by Shefter and Higuchi that the formation of crystalline solvate could be a powerful tool in affecting rapid disslution of highly insoluble substances. Goldberg et al. have noted that the formation of solid solution could reduce the particle size to a minimum and increase the dissolution rate as well as the solubility of the durgs. It has also been shown that the rates of solution of drugs were appreciably increased by coprectipitating the drug with soluble polymers. The increase was found to be sensitive to the method of preparation, the molecular weight of polymer and the particular ratio of drugs to polymer. Although several investigations have demontrated that the solubility and/or dissolution rates of drugs can be increased in this manner, little information is available in the literature related to the in vivo absorption pattern of drugs orally administered as PVP coprecipitates. Recently, however, it was demonstrated that both the rate and extent of absorption of the insoluble drug could be markedly enhanced when orally administered to rats in the form of a coprecipitate with PVP. The purpose of the present investigation was to ascertain the general appility of soluble polymer coprectation technique as a method for enhancing the in vitro dissolution rate of hydrophobic indomethacin. To accomplish this aim, the dissolution characteristics of pure indomethacin, indomethcin-polymer physical mixtures and indomethacin-polymer coprecipitates were quantitatively studied by comparing their relative dissolution rates. The solubility and dissolution behavior of these systems were also examined.

  • PDF

Surface-attached Solid Dispersion

  • Park, Young-Joon;Oh, Dong-Hoon;Yan, Yi-Dong;Seo, Yoon-Gee;Lee, Sung-Neug;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.97-102
    • /
    • 2010
  • A novel surface-attached solid dispersion is designed to improve the solubility and oral bioavailability of poorly water-soluble drugs without crystalline change. Accordingly, it draws increasing interest because of excellent stability and no pollution for accomplishing enhanced solubility and bioavailability, which have recently been highlighted in connection with a number of higher value-added poorly water-soluble drugs. In addition, excellent stability can be attained when the poorly water-soluble drugs are not dissolved but dispersed in water and provide no crystallinity change. This solid dispersion is given by means of attaching the dissolved carriers such as hydrophilic polymer and surfactant to the surface of dispersed drug particles followed by changing the hydrophobic drug to hydrophilic form. The aim of the present review is to outline the preparation, physicochemical property and bioavailability of novel surface-attached solid dispersion with improved solubility and bioavailability of poorly water-soluble drugs without crystalline change.

Effect of Hydrophilic-Lipophilic Balance of Drugs on Their Release Behavior from Amphiphilic Matrix

  • Yoo, Young-Tai;Shin, Hyun-Woo;Nam, Byung-Guk
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.283-290
    • /
    • 2003
  • Organic drugs including aspirin, omeprazole, and naproxen with three different levels of octanol/water partition coefficient were examined for their release behavior from the amphiphilic PCL-b-PEO-b-PCL (PCEC) matrix. Scanning electron micrograph (SEM) of PCEC illustrated a well defined two-phase morphology consisted of dispersed poly(ethylene oxide) (PEO) domain and continuous polycaprolactone (PCL) phase. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) experiments veri tied that three model drugs are dissolved as a molecular dispersion in PCEC matrix. The release of hydrophilic aspirin closely followed the water absorption profile of the matrix indicating that its major fraction is present in PEO domain. However, substantial amount of aspirin present in less hydrophilic region displayed discontinuous biphasic release pattern. In the case of omeprazole with intermediate hydrophobicity consistent release behavior was observed for a period of 24 hrs after the rapid liberation of ca. 10% of the drug presumably partitioned in PEO phase. It was ascribed to the fact that the progressive hydration of PCEC matrix gradually increased the chance of drug/water exposure to compensate the exhaustion of device. Naproxen with the highest octanol/water distribution coefficient among three model drugs exhibited a limited release of 35% for 24 hrs. Finally, hydroxypropyl methylcellulose phthalate (HPMCP)/PCEC blend matrix demonstrated an accelerated and quantitative release of hydrophobic naproxen by generating high porosity and thereby expanding polymer/water interface.

Effect of phenothiazine derivatives on the thermotropic phase transition of liposomal phospholipid membrane

  • Han, Suk-Kyu;Kim, Nam-Hong;Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.75-79
    • /
    • 1986
  • The effect of phenothiazine derivatives on the thermotropic transition of liposomal lipid bilayer made of dipalmitoyl phosphatidylchline and dipalmitoyl phosphatidic acid was investigated with differential scanning calorimetry. The thermograms of the liposomal bilayer incorporated with levomepromazine, chlopromazine, prochloperazine, perphenazine and fluphenazine were obtained and the size of cooperative unit of the transition were calculated from the ratio of the van't Hoff enthalpy change to the calculated enthalpy change of the transition. The results showed that incorporation of phenothiazine derivatives into the liposomal bilayer reduced the transition temperature at which the transition from solid state to liquid-crystalline state occurs, and broadened the thermogram peaks. Phenothiazine derivatives also significantly reduced the size of cooperative unit of the transition. The effect of the drugs was proportional to the concentration of the drug in the bilayer. This means that phenothiazine derivatives might have significant fluidizing effects on the biomembrane. The sizes of cooperative unit were successfully corrlated with phar-macological activities of the drugs and the surface pressure increases of lipid monolayer by these drugs. These correlations might be ascribed to a possible hydrophobic nature of interaction between the biomembrane and the drugs involved in their pharmacology.

  • PDF

The Functional Role of Lysosomes as Drug Resistance in Cancer (항암제 내성에 대한 라이소좀의 역할)

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.527-535
    • /
    • 2021
  • Lysosomes are organelles surrounded by membranes that contain acid hydrolases; they degrade proteins, macromolecules, and lipids. According to nutrient conditions, lysosomes act as signaling hubs that regulate intracellular signaling pathways and are involved in the homeostasis of cells. Therefore, the lysosomal dysfunction occurs in various diseases, such as lysosomal storage disease, neurodegenerative diseases, and cancers. Multiple forms of stress can increase lysosomal membrane permeabilization (LMP), resulting in the induction of lysosome-mediated cell death through the release of lysosomal enzymes, including cathepsin, into the cytosol. Here we review the molecular mechanisms of LMP-mediated cell death and the enhancement of sensitivity to anticancer drugs. Induction of partial LMP increases apoptosis by releasing some cathepsins, whereas massive LMP and rupture induce non-apoptotic cell death through release of many cathepsins and generation of ROS and iron. Cancer cells have many drug-accumulating lysosomes that are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. Lysosomal sequestration of hydrophobic weak base anticancer drugs can have a significant impact on their subcellular distribution. Lysosome membrane damage by LMP can overcome resistance to anticancer drugs by freeing captured hydrophobic weak base drugs from lysosomes. Therefore, LMP inducers or lysosomotropic agents can regulate lysosomal integrity and are novel strategies for cancer therapy.

A Model for the Active Site of Cyclooxygenase (사이클로옥시게나제의 작용부위 모델)

  • Kim, Yang-Bae;Chung, Uoo-Tae;Park, Il-Yeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.155-168
    • /
    • 1996
  • The active site of cyclooxygenase was modeled by complementary receptor-cavity mapping procedure using 3D structures of the non-steroidal antiinflammatory drugs (NSAIDs). A total of 50 NSAIDs were chosen as data ligands which compete the same site on the enzyme. Partial atomic charges were estimated, and the energetic differences for various conformations were calculated so as to meet the need for a most efficient overlapping of the probably-equivalent functional groups of the ligand molecules. The structure activity relationships of the NSAIDs, if available, were fully considered throughout the modeling. The overall shape of the model obtained is similar to a boot-without-bottom. Most of inner surface of the cavity appeared as hydrophobic; two polar counterparts except the carboxyl-binding position were found. By this model, some clear explanations could be given on the experimental observations which were not satisfiably understood yet.

  • PDF

Levan acetate를 이용한 hydrocortisone의 방출 제어

  • Im, Seung;Lee, Gi-Yeong;Kim, Dong-Un;Choe, Chun-Sun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.849-852
    • /
    • 2001
  • The preparation, characterization and drug release behaviour of hydrocortisone(HC) loaded levan acetate microparticles were investigated. Hydrophobic levan acetate was prepared by chemical modification of hydrophilic levan and micro particles were made by dialysis method or solvent evaporation method. The morphology of levan acetate was observed by SEM and drug release profiles were investigated at pH 7.4 and pH 1.2. Newly synthesised levan acetate can be used for carrier of drugs.

  • PDF