• Title/Summary/Keyword: hydrophobic capacity

Search Result 100, Processing Time 0.029 seconds

Solubilization Isotherms of Chlorobenzene in ionic Surfactant Solutions

  • Baek, Ki-Tae;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.201-204
    • /
    • 2003
  • Solubilization isotherms of 1-chlorobenzene (MCB) and 1, 2-dichlorobenzene (DCB) were investigated in ionic surfactant solutions such as sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and dedecyltrimethylammonium chloride (DMAC). The solubilization extent of DCB was much higher than that of MCB because of the main driving force of solubilization Is hydrophobic interactions between chlorobenzenes and hydrophobic interior of ionic micelles and DCB is more hydrophobic than MCB. CPC showed highest solubilization capacity because of longest hydrophobic tails. Simultaneous solubilization of MCB and DCB decreased slightly the extent solubilization of both MCB and DCB because the solubilization locus in the micelles is same.

  • PDF

A Fundamental Test on Insulation Aerated Concrete Containing Hydrophobic Aerogels (소수성 에어로겔을 혼입한 단열 기포콘크리트 기초연구)

  • Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.493-498
    • /
    • 2017
  • This study is a pioneer investigation to enhance the insulation capacity of the conventional aerated concrete using hydrophobic aerogels. As the main test parameters, aerogel content varied from 0% to 40% of the foam volume. Test results showed that the compressive strength of aerated concrete containing aerogels was lower by 17%~34% than that of the conventional aerated concrete. In addition, the effect of the aerogels on reducing thermal conductivity of aerated concrete is insignificant because of the partial condensation and abnormal distribution of the hydrophobic aerogels. Hence, further hydrophilic treatment for the surface of aerogels is recommended to minimize the decrease in compressive strength and enhance the insulation capacity of aerated concrete.

Effect of Carbon Dioxide in the Air on Zinc-air Cell (대기중의 이산화탄소가 공기-아연전지에 미치는 영향)

  • Kim, Nam-In;Park, Ki-Hong;Choi, Yong-Kook;Lee, Woo-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • The electrolyte was brought into contact with air and potassium carbonate concentration was measured with various contact time in order to check the effect of carbon dioxide in the air on zinc-air cell. The relationship between potassium carbonate concentration in electrolyte and battery capacity was also studied. The potassium carbonate concentration increased due to carbon dioxide absorption with increasing contact time with air, but the cell capacity linearly decreased with increasing potassium carbonate concentration in the electrolyte. The rate of carbon dioxide absorption was mainly affected by the pore size of hydrophobic membrane. Our study showed that adapting the pore of hydrophobic membrane decreased the loss of cell discharge performance due to the presence of carbon dioxide or water vapor in the atmosphere.

  • PDF

The Development of the Hydrophobic - Low Viscosity Filling Material for the Surface Treatment for Pavement Preventive Maintenance (예방적 유지보수를 위한 소수성 저점도 AP 표면처리재 개발)

  • Choi, Jun Seong;Kim, Jo Sun
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : Surface treatment is a favorable method in the pavement preventive maintenance. This study (Part I) aimed to develop the low viscosity filling material for waterproof characteristics and high penetrable and weather resistance, and a series of companion study (Part II) presents the coating characteristics and performance analysis using field and lab tests. METHODS : Hydrophobic characteristics of the advanced surface treatment material are observed and measured the filling depth and the permeability for sand and asphalt pavement specimen using the water absorption test and permeability test, X-RAY CT test. Color difference for the weather resistance using ultraviolet ray accelerated weathering test is compared with asphalt pavement specimens. RESULTS : The developed material shows the decreased water absorption and increased impermeable effect because of the hydrophobic characteristics. It is found that the filling depth is about 6mm and weather resistance is better than asphalt pavement specimen. CONCLUSIONS : The advanced hydrophobic - low viscosity filling treatment material is developed in this study (Part I) to improve the waterproof characteristics and high filling capacity and weather resistance for the pavement preventive maintenance.

Graft copolymerization of GMA and EDMA on PVDF to hydrophilic surface modification by electron beam irradiation

  • Lim, Seung Joo;Shin, In Hwan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.373-380
    • /
    • 2020
  • This study was carried out to convert the hydrophobic characteristics of PVDF to hydrophilic. Poly(-vinylidene fluorine) (PVDF) was grafted by electron beam irradiation and sulfonated. The grafting degree of modified PVDF increased with the monomer concentration, but not the conversion degree. From the results of FTIR and XPS, it was shown that the amount of converted sulfur increased with the grafting degree. The radiation-induced graft polymerization led to decrease fluorine from 35.7% to 21.3%. Meanwhile, the oxygen and sulfur content increased up to 8.1% and 3.2%. The pore size of modified membranes was shrunken and the roughness sharply decreased after irradiation. The ion exchange capacity and contact angle were investigated to show the characteristics of PVDF. The enhanced ion exchange capacity and lower contact angle of modified PVDF showed that the hydrophilicity played a role in determining membrane fouling. Electron beam irradiation successfully modified the hydrophobic characteristics of PVDF to hydrophilic.

Improvement of Functional Properties of Extracts from Hydrothermal Cooked Fish Meat by Plastein Reaction (Plastein 반응에 의한 고온조리 어육추출물의 기능성 개선)

  • 이근태;박성민;이상호;류홍수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.93-101
    • /
    • 1998
  • In order to improve the functional properties of several fish meat extracts as an alternate protein source, theri basic plastein reactions were evaluated. The UV absorption at 270 and 290 nm indicated that plasteins had higher amount of hydrophobic peptide or amino acid than the fish meat extracts. The water solubilities of the extracts were reduced at acidic pH. Values for the emulsifying capacity of the extracts and plasteins were over 30% although the latter showed the higher ones than the former. The osmolalities of the extracts at 1.0% concentration were 39(loach), 33(bastard halibut), 30(jacopever) and 24(crucan carp) milliosmole. Generally the slightly higher osmolalities were noted in the plasteins to be compared with the extracts. Both the extracts and plasteins exhibited a higher antioxidative effect than tocopherol. The hydrophobic amino acid which had been introduced at plastein reaction attributed the stronger antionxidative effect of its product than the extracts.

  • PDF

Preparation of Modified Hollow Polypropylene Membrane and Their Adsorption Properties of ${\gamma}$-Globulins

  • Hwang, Taek-Sung;Park, Jin-Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.347-351
    • /
    • 2003
  • The hydrophobic ligand-containing hollow polypropylene (PP) membranes were synthesized by the mutual radiation induced graft copolymerization with glycidylmethacrylate (GMA) onto hollow PP membrane followed by the subsequent functionalization with L-phenylalanine. FT-IR, elemental analysis and UV spectroscopy were utilized to characterize copolymer composition, and degree of grafting, functionalization conversion and ${\gamma}$-globulins adsorption. The degree of grafting on the PP surface increased with the reaction time and total dose of E-beam. In the subsquent functionalization, the amount of L-phenylalanine increased with the increase in the degree of grafting and the degree of conversion was about 30%. The ${\gamma}$-globulins adsorption experiments showed that adsorption capacity had a maximum value at pH 8. The ${\gamma}$-globulins adsorption capacity in the basic pH region was higher than in the acidic pH region.

The Effect of Physicochemical Properties of Salicylate Analogs on Binding to Bovine Serum Albumin (살리실산 유사체류의 물성이 우혈청 알부민 결합에 미치는 영향)

  • Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.119-125
    • /
    • 1993
  • The protein binding of salicylate analogs has been investigated by equilibrium dialysis. A series of binding experiments were performed in order to elucidate the effects of physicochemical properties of salicylate analogs on the binding with bovine serum albumin. Attempts to correlate affinity constants with capacity factor, steric factor and Hammett ${\sigma}$ values suggested hydrophobic forces to be involved in the binding of salicylate analogs. Steric factor contributes to binding process partly, whereas electronic interaction appears to be insignificant.

  • PDF

Hydrophobic modification conditions of Al2O3 ceramic membrane and application in seawater desalination

  • Lian li;Zhongcao Yang;Lufen Li
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • 1H,1H,2H,2H-perfluorodecytriethoxysilane (C16H19F17O3Si) be successfully applied to the hydrophobic modification of Al2O3 tubular ceramic membrane. Taking the concentration of modification solution, modification time, and modification temperature as factors, orthogonal experiments were designed to study the hydrophobicity of the composite membranes. The experiments showed that the modification time had the greatest impact on the experimental results, followed by the modification temperature, and the modification solution concentration had the smallest impact. Concentration of the modified solution 0.012 mol·L-1, modification temperature 30 ℃ and modification time 24 h were considered optimal hydrophobic modification conditions. And the pure water flux reached 274.80 kg·m-2·h-1 at 0.1MPa before hydrophobic modification, whereas the modified membrane completely blocked liquid water permeation at pressures less than 0.1MPa. Air gap membrane distillation experiments were conducted for NaCl (2wt%) solution, and the maximum flux reached 4.20 kg·m-2·h-1, while the retention rate remained above 99.8%. Given the scarcity of freshwater resources in coastal areas, the article proposed a system for seawater desalination using air conditioning waste heat, and conducted preliminary research on its freshwater production performance using Aspen Plus. Finally, the proposed system achieved a freshwater production capacity of 0.61 kg·m-2·h-1.

An influence on EDC/PPCPs adsorption onto single-walled carbon nanotubes with cationic surfactant (단일벽 탄소나노튜브의 미량유해물질 흡착거동에서 양이온 계면활성제의 영향에 관한 연구)

  • Heo, Jiyong;Lee, Heebum;Han, Jonghun;Son, Mihyang;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.419-429
    • /
    • 2014
  • Recent studies have been reported the presence of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products (EDC/PPCPs) in surface and wastewater, which could potentially affect to the complicate behavior in coupled presence of nano-colloid particles and surfactants (adsorption, dispersion, and partitioning). In this study, the adsorption of EDC/PPCPs by Single Walled Carbon Nanotubes (SWNTs) as a representative of nano-particles in cationic surfactant solutions were investigated. Hydrophobic interactions (${\pi}-{\pi}$ Electron Donor-Acceptor) have been reported as a potential adsorption mechanisms for EDC/PPCPs onto SWNTs. Generally, the adsorptive capacity of the relatively hydrophobic EDC/PPCPs onto SWNTs decreased in the presence of cationic surfactant (Cetyltrimethyl Ammonium Bromide, CTAB). This study revealed that the competitive adsorption occurred between CTAB cations and EDC/PPCPs by occupying the available SWNT surface (CTAB adsorption onto SWNTs shows five-regime and maximum adsorption capacity of 370.4 mg/g by applying the BET isotherm). The adsorption capacity of $17{\alpha}$-ethinyl estradiol (EE2) on SWNT showed the decrease of 48% in the presence of CTAB. However, the adsorbed naproxen (NAP) surely increased by forming hemimicelles and resulted in a favorable media formation for NAP partition to increase SWNTs adsorption capacity. The adsorbed NAP increased from 24 to 82.9 mg/g after the interaction of CTAB with NAP. The competitive adsorption for EDC/PPCPs onto SWNTs is likely to be a key factor in the presence of cationic surfactant, however, NAP adsorption showed a slight competition through $CH_3-CH_3$ interaction by forming hemimicelles on SWNT surface.