DOI QR코드

DOI QR Code

Hydrophobic modification conditions of Al2O3 ceramic membrane and application in seawater desalination

  • Lian li (Zhejiang College of Security Technology) ;
  • Zhongcao Yang (Zhejiang College of Security Technology) ;
  • Lufen Li (Zhejiang College of Security Technology)
  • Received : 2023.07.23
  • Accepted : 2024.03.25
  • Published : 2024.01.25

Abstract

1H,1H,2H,2H-perfluorodecytriethoxysilane (C16H19F17O3Si) be successfully applied to the hydrophobic modification of Al2O3 tubular ceramic membrane. Taking the concentration of modification solution, modification time, and modification temperature as factors, orthogonal experiments were designed to study the hydrophobicity of the composite membranes. The experiments showed that the modification time had the greatest impact on the experimental results, followed by the modification temperature, and the modification solution concentration had the smallest impact. Concentration of the modified solution 0.012 mol·L-1, modification temperature 30 ℃ and modification time 24 h were considered optimal hydrophobic modification conditions. And the pure water flux reached 274.80 kg·m-2·h-1 at 0.1MPa before hydrophobic modification, whereas the modified membrane completely blocked liquid water permeation at pressures less than 0.1MPa. Air gap membrane distillation experiments were conducted for NaCl (2wt%) solution, and the maximum flux reached 4.20 kg·m-2·h-1, while the retention rate remained above 99.8%. Given the scarcity of freshwater resources in coastal areas, the article proposed a system for seawater desalination using air conditioning waste heat, and conducted preliminary research on its freshwater production performance using Aspen Plus. Finally, the proposed system achieved a freshwater production capacity of 0.61 kg·m-2·h-1.

Keywords

Acknowledgement

The authors express their sincere gratitude to the Bureau of Science and Technology of Wenzhou Municipality for its financial support through the grant S20220001.

References

  1. Ali, A., Tsai, J.H., Tung, K.L., Drioli, E. and Macedonio, F. (2018), "Designing and optimization of continuous direct contact membrane distillation process", Desalination, 426, 97-107. https://doi.org/10.1016/j.desal.2017.10.041. 
  2. Bundschuh, J., Kaczmarczyk, M., Ghaffou, N and Tomaszewska, B. (2021), "State-of-the-art of renewable energy sources used in water desalination: present and future prospects", Desalination, 508, 115035. https://doi.org/10.1016/j.desal.2021.115035. 
  3. Cerneaux, S., Struzynska, I., Kujawski, W.M., Persin, M. and Larbot, A. (2009), "Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes", J. Membr. Sci., 337(1-2), 55-60. https://doi.org/10.1016/j.memsci.2009.03.025. 
  4. Chen, X.F., Gao, X.Y., Fu, K.Y., Qiu, M.H., Xiong, F., Ding, D., Cui, ZL.,Wang, Z.H., Fan, Y.Q. and Drioli ,E. (2018), "Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process", Desalination, 443, 212-220. https://doi.org/10.1016/j.desal.2018.05.027. 
  5. Fang, H., Gao, J.F., Wang, H.T., and Chen, C.S. (2012). "Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process", J. Membr. Sci., 403-404, 41-46. https://doi.org/10.1016/j.memsci.2012.02.011. 
  6. Gao, J.Y., Wang, M.X., Yun, Y.B. (2018), "Treatment of high-salinity wastewater after the resin regeneration using VMD", Membr. Water Treat., 2018, 9(1), 53-62. https://doi.org/10.12989/mwt.2018.9.1.053. 
  7. Garcia-Fernandez, L.Wang, B., Garcia-Payo, M. C. , Li, K. and Khayet, M. (2017), "Morphological design of alumina hollow fiber membranes for desalination by air gap membrane distillation", Desalination, 420, 226-240. https://doi.org/10.1016/j.desal.2017.07.021. 
  8. Gazagnes, L., Cerneaux, S., Persin, M., Prouzet, E. and Larbot, A. (2007), "Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes", Desalination, 217(1-3), 260-266. https://doi.org/10.1016/j.desal.2007.01.017. 
  9. Geng, H.M., Zhong, Q.Z., Li, J.H., Lin Z.X., Cui, J.W., Caruso, F. and Hao, J.C. (2022), "Metal ion-directed functional metal-phenolic materials", Chem. Rev., 122(13), 11432-11473. https://doi.org/10.1021/acs.chemrev.1c01042. 
  10. Jeong, H.J., Kim, D.K., Lee, S.B., Kwon, S.H. and Kadono, K. (2001), "Preparation of water-repellent glass by sol-gel process using perfluoroalkylsilane and tetraethoxysilane", J. Colloid Interf. Sci., 235(1), 130-134. https://doi.org/10.1006/jcis.2000.7313. 
  11. Khemakhem, S. and Ben Amar, R. (2011), "Grafting of fluoroalkylsilanes on microfiltration Tunisian clay membrane", Ceram. Int., 37(8), 3323-3328. https://doi.org/10.1016/j.ceramint.2011.04.128. 
  12. Kujawa, J., Cerneaux, S., Kujawski, W. and Knozowska, K. (2017), "Hydrophobic ceramic membranes for water desalination", Appl. Sci.-Basel, 7(4), 420. https://doi.org/10.3390/app7040402. 
  13. Kujawa, J., Kujawski, W., Cerneaux, S., Li, G.Q. and Al-Gharabli S. (2020), "Zirconium dioxide membranes decorated by silanes based-modifiers for membrane distillation-Material chemistry approach", J. Membr. Sci., 596, 117597. https://doi.org/10.1016/j.memsci.2019.117597. 
  14. Kujawa, J., Kujawski, W., Koter, S., Jarzynka, K., Rozicka, A., Bajda, K., Cerneaux, S., Persin, M. and Larbot, A. (2013), "Membrane distillation properties of TiO2 ceramic membranes modified by perfluoroalkylsilanes", Desalin. Water Treat., 51(7-9), 1352-1361. https://doi.org/10.1080/19443994.2012.704976. 
  15. Lau, W.J., Goh, P.S., Ismail, A.F. and Lai, S.O. (2014), "Ultrafiltration as a pretreatment for seawater desalination, A review", Membr. Water Treat., 5(1),15-29. https://doi.org/10.1252/jcej.13we168. 
  16. Lee, H., Dellatore, S.M., Miller, W.M. and Messersmith, P. B. (2007), "Mussel-inspired surface chemistry for multifunctional coatings", Science, 318(5849), 426-430. https://doi.org/10.1126/science.1147241. 
  17. Lin, Y.X., Liou, Y.K., Lee, S.L., Chen, S.Y., Tao, F.T., Cheng, T.W. and Tung, K.L. (2023), "Preparation of PVDF/PMMA composite membrane with green solvent for seawater desalination by gap membrane distillation", J. Membr. Sci., 679, 121676. https://doi.org/10.1016/j.memsci.2023.121676. 
  18. Liu, T., Lei, L.B., Gu, J.Q., Wang, Y., Winnubst, L., Chen, C.S., Ye, C.S. and Chen, F.L. (2017), "Enhanced water desalination performance through hierarchically-structured ceramic membranes", J. Eur. Ceram. Soc., 37(6), 2431-2438. https://doi.org/10.1016/j.jeurceramsoc.2017.02.001. 
  19. Mabrouk, A.N. and Fath HES. (2015), "Technoeconomic study of a novel integrated thermal MSF-MED desalination technology", Desalination, 371,115-125. https://doi.org/10.1016/j.desal.2015.05.025. 
  20. Miao, M.Y., Liu, T., Bai, J.Y. and Wang, Y. (2022), "Engineering the wetting behavior of ceramic membrane by carbon nanotubes via a chemical vapor deposition technique", J. Membr. Sci., 648, 120357. https://doi.org/10.1016/j.memsci.2022.120357. 
  21. Monde, T., Fukube, H., Nemoto, F., Yoko T. and Konakahara T. (1999), "Preparation and surface properties of silica-gel coating films containing branched-polyfluoroalkylsilane", J. Non-Cryst. Solids, 246(1-2), 54-64. https://doi.org/10.1016/S0022-3093(99)00003-4. 
  22. Padaki, M., Murali, R.S., Abdullah, M.S., Misdan, N., Moslehyani, A., Kassim, M.A., Hilal, N. and Ismail, A.F. (2015), "Membrane technology enhancement in oil-water separation: A review", Desalination, 357, 197-207. https://doi.org/10.1016/j.desal.2014.11.023. 
  23. Picard, C., Larbot, A, Guida-Pietrasanta, F., Boutevin, B. and Ratsimihety, A. (2001), "Grafting of ceramic membranes by flourinated silanes, Hydrophobic features", Sep. Purif. Technol., 25(1-3), 65-69. https://doi.org/10.1016/S1383-5866(01)00091-0. 
  24. Saleh, J.M., Ali, E.M., Orfi, J.A. and Najib, A.M. (2019), "Water cost analysis of different membrane distillation process configurations", Membr. Water Treat., 11(5), 363-374. https://doi.org/10.12989/mwt.2020.11.5.363. 
  25. Sandid, A.M., Nehari, D. and Nehari, T. (2022), "Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination", Membr. Water Treat., 13(5),235-243. https://doi.org/10.12989/mwt.2022.13.5.235. 
  26. Subramanian, N., Qamar, A., Alsaad, A., Gallo, A., Ridwan, M.G., Lee, J.G., Pillai, S., Arunachalam, S., Anjum, D., Sharipov, F., Ghaffour, N. and Mishra, H. (2019), "Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation", J. Colloid Interf. Sci., 533, 723-732. https://doi.org/10.1016/j.jcis.2018.08.054. 
  27. Varela-Corredor, F. and Bandini, S. (2020), "Testing the applicability limits of a membrane distillation process with ceramic hydrophobized membranes, The critical wetting temperature", Sep. Purif. Technol., 250, 117205. https://doi.org/10.1016/j.seppur.2020.117205. 
  28. Wang, P. and Chung, T.S. (2015), "Recent advances in membrane distillation processes, Membrane development, configuration design and application exploring", J. Membr. Sci., 474, 39-56. https://doi.org/10.1016/j.memsci.2014.09.016. 
  29. Wieszczycka, K., Staszak, K., WoZniak-Budych, M.J., Litowczenko, J., Maciejewska, B.M. and Jurga, S. (2021), "Surface functionalization-The way for advanced applications of smart materials", Coordin. Chem. Rev., 436, 213846. https://doi.org/10.1016/j.ccr.2021.213846. 
  30. Xu, J.L., Singh, Y.B., Amy, G.L. and Ghaffour, N. (2016), "Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water", J. Membr. Sci., 512, 73-82. https://doi.org/10.1016/j.memsci.2016.04.010. 
  31. Yadav, M., Upadhyay, S., Singh, K., Chaturvedi, T.K. and Vashishtha, M. (2022), "Morphological study of synthesized PVDF membrane using different non-solvents for coagulation", Membr. Water Treat., 13(4), 173-181. https://doi.org/10.12989/mwt.2022.13.4.173. 
  32. Yang, X.B., Martinson, A.B.F., Elam, J.W., Shao, L. and Darling, S.B. (2021), "Water treatment based on atomically engineered materials, Atomic layer deposition and beyond", Matter, 4(11), 3515-3548. https://doi.org/10.1016/j.matt.2021.09.005. 
  33. Yang, X.B., Sun, P., Zhang, H.R., Xia, Z.J., Waldman, R.Z., Mane, A.U., Elam, J.W., Shao, L. and Darling, S.B. (2020), "Polyphenol-sensitized atomic layer deposition for membrane interface hydrophilization", Adv. Funct. Mater., 30(15), 1910062. https://doi.org/10.1002/adfm.201910062.