• 제목/요약/키워드: hydrophobic binding

검색결과 192건 처리시간 0.13초

Preferential Peroxidase Activity of Prostaglandin Endoperoxide H Synthase for Lipid Peroxides

  • Yun, Seol-Ryung;Han, Su-Kyong;Song, In-Seok
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.94-94
    • /
    • 2001
  • Prostaglandin endoperoxide H synthase (PGHS) catalyzes the committed step in prostaglandins and thromboxane A$_2$-- oxygenation of arachidonic acid to the hydroperoxy endoperoxide PGG$_2$, followed by reduction PGG$_2$to the alcohol PGH$_2$. The two reactions by PGHS -- cyclooxygenase and peroxidase -- occur at distinct but structurally and functionally interconnected sites. The peroxidase reaction occurs at a heme-containing active site located near the protein surface. The cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme. Initially a peroxide reacts with the heme group, yielding Compound I and an alcohol derived from the oxidizing peroxide. Compound I next undergoes an intramolecular reduction by a single electron traveling from Tyr385 along the peptide chain to the proximal heme ligand, His388, and finally to the heme group. Following the binding of arachidonic acid, Tyr385 tyrosyl radical initiates the cyclooxygenase reaction by abstracting the 13-pro(5) hydrogen atom to give an arachidonyl radical, which sequentially reacts with two molecules of oxygen to yield PGG$_2$. In order to characterize PGHS peroxidase active site, we examined various lipid peroxides with purified recombinant ovine PGHS proteins and determined the rate constants. The results have shown that twenty-carbon unsaturated fatty acid hydroperoxides have similar efficiency in peroxidation by PGHS, irrespective of either the location of hydroperoxy group or the number of double bonds. It was also confirmed by the subsequent study with PGHS peroxidase active site mutants.

  • PDF

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.

Designing Signal Peptides for Efficient Periplasmic Expression of Human Growth Hormone in Escherichia coli

  • Jeiranikhameneh, Meisam;Moshiri, Farzaneh;Falasafi, Soheil Keyhan;Zomorodipour, Alireza
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권11호
    • /
    • pp.1999-2009
    • /
    • 2017
  • The secretion efficiency of a protein in a Sec-type secretion system is mainly determined by an N-terminal signal peptide and its combination with its cognate protein. Five signal peptides, namely, two synthetic Sec-type and three Bacillus licheniformis alpha-amylase-derived signal peptides, were compared for periplasmic expression of the human growth hormone (hGH) in E. coli. Based on in silico predictions on the signal peptides' cleavage efficiencies and their corresponding mRNA secondary structures, a number of amino acid substitutions and silent mutations were considered in the modified signal sequences. The two synthetic signal peptides, specifically designed for hGH secretion in E. coli, differ in their N-terminal positively charged residues and hydrophobic region lengths. According to the mRNA secondary structure predictions, combinations of the protein and each of the five signal sequences could lead to different outcomes, especially when accessibility of the initiator ATG and ribosome binding sites were considered. In the experimental stage, the two synthetic signal peptides displayed complete processing and resulted in efficient secretion of the mature hGH in periplasmic regions, as was demonstrated by protein analysis. The three alpha-amylase-derived signal peptides, however, were processed partially from their precursors. Therefore, to achieve efficient secretion of a protein in a heterologous system, designing a specific signal peptide by using a combined approach of optimizations of the mRNA secondary structure and the signal peptide H-domain and cleavage site is recommended.

단백질의 구조연구 : ACE의 기질 HHL을 이용한 신규 살충제 표적 AnCE에 대한 약리단 연구 (Protein structure analysis : Pharmacophore study for new insecticide target AnCE using the substrate of ACE, HHL molecule)

  • 이정경;김경이
    • 농약과학회지
    • /
    • 제9권3호
    • /
    • pp.191-198
    • /
    • 2005
  • 신규 살충제 표적 단백질인 AnCE의 활성부위 잔기들과 상호작용 가능한 약리단 (pharmacophore)을 세 개의 펩타이드로 이루어진 ACE 기질 Hippuryl-L -histidyl-L-leucine (Hip-L-His-L-Leu, HHL) 분자의 구조를 모델로 하여 예측하였다. HHL의 분자구조, 용액장 내에서의 구조변화 그리고 약리단을 구성하는 원자들의 전하밀도 분석을 위해 순이론적인 양자화학 계산방법을 이용하여 구조 최적화, NMR 화학적 이동 및 NPA 계산을 수행하였다. 이론적인 NMR 화학적 이동 값들은 실험 결과와 잘 일치함을 보였고 전하밀도 계산 결과는 해당원자의 약리단을 분석하는데 사용되었다. 결과적으로 HHL 분자 구조를 통해 소수성(aromatic, aliphatic), 수소결합 주게, 수소결합 받게, 금속 아연 결합부위의 5개 약리단을 추출할 수 있었다.

대두 펩타이드의 표면소수도가 흰쥐의 혈청 콜레스테롤 농도 및 분변 스테로이드의 배설량에 미치는 영향 (Effect of Surface Hydrophobicity of Soybean Peptides on the Concentration of Serum Cholesterol and Fecal Steroid Excretion in Rats)

  • 한응수;이형주;손동화
    • 한국식품과학회지
    • /
    • 제25권5호
    • /
    • pp.571-575
    • /
    • 1993
  • 대두 펩타이드의 표면소수도가 혈청 콜레스테롤의 농도에 미치는 영향을 조사하기 위하여, 대두 단백질(ISP), 카세인(CNP), 이들 단백질을 펩신으로 가수분해하여 pH에 따른 펩타이드 침전 획분들(SHT, SH8, SH6, SH4, CHT, CH6, CH5, CH4)을 흰쥐에 섭취시키고 혈청 콜레스테롤 농도 및 분변 스테로이드이 배설량을 측정하였다. 그리고 각 펩타이드의 표면소수도를 ANS 형광법 및 SDS 결합법으로 측정하여, 이들의 상관관계를 분석한 결과, 펩타이드의 ANS 표면소수도가 높아질수록 분변으로 배설된 스테로이드량은 증가하였으며(r=0.81), 혈청 콜레스테롤 농도는 낮아졌다.(r=-0.868). 그러나 SDS 표면소수도는 그들과 상관관계가 없었다. 또한 대두 단백질은 가수분해에 의하여 ANS 표면소수도가 증가하였다. 이상의 결과는 흰쥐의 담즙염이, 소화중 생성된 높은 표면소수도의 펩타이드와 결합하여 체외로 배출되므로서 대두단백질의 섭취에 의한 혈청 콜레스테롤 농도가 낮아짐을 시사하였다.

  • PDF

Biochemical Analysis of a Cytosolic Small Heat Shock Protein, NtHSP18.3, from Nicotiana tabacum

  • Yu, Ji Hee;Kim, Keun Pill;Park, Soo Min;Hong, Choo Bong
    • Molecules and Cells
    • /
    • 제19권3호
    • /
    • pp.328-333
    • /
    • 2005
  • Small heat shock proteins (sHSPs) are widely distributed, and their function and diversity of structure have been much studied in the field of molecular chaperones. In plants, which frequently have to cope with hostile environments, sHSPs are much more abundant and diverse than in other forms of life. In response to high temperature stress, sHSPs of more than twenty kinds can make up more than 1% of soluble plant proteins. We isolated a genomic clone, NtHSP18.3, from Nicotiana tabacum that encodes the complete open reading frame of a cytosolic class I small heat shock protein. To investigate the function of NtHSP18.3 in vitro, it was overproduced in Escherichia coli and purified. The purified NtHSP18.3 had typical molecular chaperone activity as it protected citrate synthase and luciferase from high temperature-induced aggregation. When E. coli celluar proteins were incubated with NtHSP18.3, a large proportion of the proteins remained soluble at temperatures as high as $70^{\circ}C$. Native gel analysis suggested that NtHSP18.3 is a dodecameric oligomer as the form present and showing molecular chaperone activity at the condition tested. Binding of bis-ANS to the oligomers of NtHSP18.3 indicated that exposure of their hydrophobic surfaces increased as the temperature was raised. Taken together, our data suggested that NtHSP18.3 is a molecular chaperone that functions as a dodecameric complex and possibly in a temperature-induced manner.

Characterization of CYP125A13, the First Steroid C-27 Monooxygenase from Streptomyces peucetius ATCC27952

  • Rimal, Hemraj;Subedi, Pradeep;Kim, Ki -Hwa;Park, Hyun;Lee, Jun Hyuck;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1750-1759
    • /
    • 2020
  • The characterization of cytochrome P450 CYP125A13 from Streptomyces peucetius was conducted using cholesterol as the sole substrate. The in vitro enzymatic assay utilizing putidaredoxin and putidaredoxin reductase from Pseudomonas putida revealed that CYP125A13 bound cholesterol and hydroxylated it. The calculated KD value, catalytic conversion rates, and Km value were 56.92 ± 11.28 μM, 1.95 nmol min-1 nmol-1, and 11.3 ± 2.8 μM, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis showed that carbon 27 of the cholesterol side-chain was hydroxylated, characterizing CYP125A13 as steroid C27-hydroxylase. The homology modeling and docking results also revealed the binding of cholesterol to the active site, facilitated by the hydrophobic amino acids and position of the C27-methyl group near heme. This orientation was favorable for the hydroxylation of the C27-methyl group, supporting the in vitro analysis. This was the first reported case of the hydroxylation of cholesterol at the C-27 position by Streptomyces P450. This study also established the catalytic function of CYP125A13 and provides a solid basis for further studies related to the catabolic potential of Streptomyces species.

Phosphorylation of $Ser^{246}$ Residue in Integrin-linked Kinase 1 by Serum- and Glucocorticoid-induced Kinase 1 is Required to Form a Protein-protein Complex with 14-3-3

  • Chun, Jae-Sun;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • 제9권3호
    • /
    • pp.161-171
    • /
    • 2005
  • Integrin-linked kinase 1 (ILK1) regulates several protein kinases, including PKB/Akt kinase and glycogen synthase kinase ${\beta}$. ILK1 is also involved distinctively in the cell morphological and structural functions by interacting with the components of the extracellular matrix or integrin. According to the information of serum- and glucocorticoid-induced kinase 1 (SGK1) substrate specificity (R-X-R-X-X(S/T)-${\phi};{\phi}$ indicates a hydrophobic amino acid), two putative phosphorylation sites, $Thr^{181}\;and\;Ser^{246}$, were found in ILK1. We showed that ILK1 fusion protein and two fluorescein-labeled ILK1 peptides, $FITC-^{174}RTRPRNGTLN^{183}$ and $FITC-^{239}CPRLRIFSHP^{248}$, were phosphorylated by SGK1 in vitro. We also identified that 14-3-3 ${\theta}\;{\varepsilon}\;and\;{\xi}$, among several 143-3 isotypes $({\beta},\;{\gamma},\;{\varepsilon},\;{\eta},\;{\sigma},\;{\theta},\;{\tau}\;and\;{\xi})$ formed protein complex with ILK1 in COS-1 cells. Furthermore, the phosphorylation of $Ser^{246}$ by SGK1 induced the binding with 14-3-3. It was also demonstrated that 14-3-3-bound ILK1 has reduced kinase activity. Thus, these data suggest that SGK1 phosphorylates $Thr^{181}\;and\;Ser^{246}$ of ILK1 and the phosphorylation of its $Ser^{246}$ makes ILK1 bind to 14-3-3, resulting in the inhibition of ILK1 kinase activity.

Advances in serological diagnosis of Taenia solium neurocysticercosis in Korea

  • Ahn, Chun-Seob;Kim, Jeong-Geun;Huh, Sun;Kang, Insug;Kong, Yoon
    • Genomics & Informatics
    • /
    • 제17권1호
    • /
    • pp.7.1-7.10
    • /
    • 2019
  • Cysticercosis, a parasitic disease caused by Taenia solium metacestode (TsM), has a major global public health impact in terms of disability-adjusted life years. The parasite preferentially infects subcutaneous tissue, but may invade the central nervous system, resulting in neurocysticercosis (NC). NC is an important neglected tropical disease and an emerging disease in industrialized countries due to immigration from endemic areas. The prevalence of taeniasis in Korea declined from 0.3%-12.7% during the 1970s to below 0.02% since the 2000s. A survey conducted from 1993 to 2006 revealed that the percentage of tested samples with high levels of specific anti-TsM antibody declined from 8.3% to 2.2%, suggesting the continuing occurrence of NC in Korea. Modern imaging modalities have substantially improved the diagnostic accuracy of NC, and recent advances in the molecular biochemical characterization of the TsM cyst fluid proteome also significantly strengthened NC serodiagnosis. Two glycoproteins of 150 and 120 kDa that induce strong antibody responses against sera from patients with active-stage NC have been elucidated. The 150 kDa protein showed hydrophobic-ligand binding activities and might be critically involved in the acquisition of host-derived lipid molecules. Fasciclin and endophilin B1, both of which play roles in the homeostatic functions of TsM, showed fairly high antibody responses against calcified NC cases. NC is now controllable and manageable. Further studies should focus on controlling late-onset intractable seizures and serological diagnosis of NC patients infected with few worms. This article briefly overviews diagnostic approaches and discusses current issues relating to NC serodiagnosis.

Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1

  • Kim, Subin;Sung, Jongmin;Yeon, Jungyoon;Choi, Seung Hun;Jin, Mi Sun
    • Molecules and Cells
    • /
    • 제42권6호
    • /
    • pp.460-469
    • /
    • 2019
  • Bacterial ${\alpha}-type$ carbonic anhydrase (${\alpha}-CA$) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable ${\alpha}-CA$ from Persephonella marina EX-H1 (pmCA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pmCA homodimer in which each monomer consists of a 10-stranded ${\beta}-sheet$ in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pmCA and solvent molecules. These findings may assist development of novel ${\alpha}-CAs$ with improved thermal and/or alkaline stability for applications such as $CO_2$ capture and sequestration.