Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0029

Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1  

Kim, Subin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Sung, Jongmin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Yeon, Jungyoon (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Choi, Seung Hun (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Jin, Mi Sun (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Abstract
Bacterial ${\alpha}-type$ carbonic anhydrase (${\alpha}-CA$) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable ${\alpha}-CA$ from Persephonella marina EX-H1 (pmCA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pmCA homodimer in which each monomer consists of a 10-stranded ${\beta}-sheet$ in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pmCA and solvent molecules. These findings may assist development of novel ${\alpha}-CAs$ with improved thermal and/or alkaline stability for applications such as $CO_2$ capture and sequestration.
Keywords
carbonic anhydrase; $CO_2$ capture and storage; $CO_2$ mineralization; Persephonella marina EX-H1; zinc metalloenzyme;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boone, C.D., Habibzadegan, A., Tu, C., Silverman, D.N., and McKenna, R. (2013). Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond. Acta Crystallogr. D Biol. Crystallogr. 69, 1414-1422.   DOI
2 Britton, K.L., Baker, P.J., Fisher, M., Ruzheinikov, S., Gilmour, D.J., Bonete, M.J., Ferrer, J., Pire, C., Esclapez, J., and Rice, D.W. (2006). Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc. Natl. Acad. Sci. U. S. A. 103, 4846-4851.   DOI
3 Collaborative Computational Project, Number 4. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760-763.   DOI
4 Covarrubias, A.S., Bergfors, T., Jones, T.A., and Hogbom, M. (2006). Structural mechanics of the pH-dependent activity of beta-carbonic anhydrase from Mycobacterium tuberculosis. J. Biol. Chem. 281, 4993-4999.   DOI
5 Cronk, J.D., Rowlett, R.S., Zhang, K.Y., Tu, C., Endrizzi, J.A., Lee, J., Gareiss, P.C., and Preiss, J.R. (2006). Identification of a novel noncatalytic bicarbonate binding site in eubacterial beta-carbonic anhydrase. Biochemistry 45, 4351-4361.   DOI
6 Xue, Y., Liljas, A., Jonsson, B.H., and Lindskog, S. (1993). Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II. Proteins 17, 93-106.   DOI
7 De Simone, G., Monti, S.M., Alterio, V., Buonanno, M., De Luca, V., Rossi, M., Carginale, V., Supuran, C.T., Capasso, C., and Di Fiore, A. (2015). Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorg. Med. Chem. Lett. 25, 2002-2006.   DOI
8 Carter, J.M., Havard, D.J., and Parsons, D.S. (1969). Electrometric assay of rate of hydration of $CO_2$ for investigation of kinetics of carbonic anhydrase. J. Physiol. 204, 60P-62P.
9 Del Prete, S., Vullo, D., Fisher, G.M., Andrews, K.T., Poulsen, S.A., Capasso, C., and Supuran, C.T. (2014a). Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the eta-carbonic anhydrases. Bioorg. Med. Chem. Lett. 24, 4389-4396.   DOI
10 Del Prete, S., Vullo, D., Scozzafava, A., Capasso, C., and Supuran, C.T. (2014b). Cloning, characterization and anion inhibition study of the delta-class carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii. Bioorg. Med. Chem. 22, 531-537.   DOI
11 Di Fiore, A., Capasso, C., De Luca, V., Monti, S.M., Carginale, V., Supuran, C.T., Scozzafava, A., Pedone, C., Rossi, M., and De Simone, G. (2013). X-ray structure of the first 'extremo-alpha-carbonic anhydrase', a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Acta Crystallogr. D Biol. Crystallogr. 69, 1150-1159.   DOI
12 Dubnovitsky, A.P., Kapetaniou, E.G., and Papageorgiou, A.C. (2005). Enzyme adaptation to alkaline pH: atomic resolution (1.08 A) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci. 14, 97-110.   DOI
13 Emsley, P. and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132.   DOI
14 Eriksson, A.E., Jones, T.A., and Liljas, A. (1988). Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins 4, 274-282.   DOI
15 Ferry, J.G. (2010). The gamma class of carbonic anhydrases. Biochim. Biophys. Acta 1804, 374-381.   DOI
16 Gotz, D., Banta, A., Beveridge, T.J., Rushdi, A.I., Simoneit, B.R., and Reysenbach, A.L. (2002). Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int. J. Syst. Evol. Microbiol. 52, 1349-1359.   DOI
17 Fisher, S.Z., Maupin, C.M., Budayova-Spano, M., Govindasamy, L., Tu, C., Agbandje-McKenna, M., Silverman, D.N., Voth, G.A., and McKenna, R. (2007). Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism. Biochemistry 46, 2930-2937.   DOI
18 Fredslund, F., Borchert, M.S., Poulsen, J.N., Mortensen, S.B., Perner, M., Streit, W.R., and Lo Leggio, L. (2018). Structure of a hyperthermostable carbonic anhydrase identified from an active hydrothermal vent chimney. Enzyme Microb. Technol. 114, 48-54.   DOI
19 Frolow, F., Harel, M., Sussman, J.L., Mevarech, M., and Shoham, M. (1996). Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nat. Struct. Biol. 3, 452-458.   DOI
20 Han, Y.S., Hadiko, G., Fuji, M., and Takahashi, M. (2006). Crystallization and transformation of vaterite at controlled pH. J. Cryst. Growth 289, 269-274.   DOI
21 Jeyakanthan, J., Rangarajan, S., Mridula, P., Kanaujia, S.P., Shiro, Y., Kuramitsu, S., Yokoyama, S., and Sekar, K. (2008). Observation of a calcium-binding site in the gamma-class carbonic anhydrase from Pyrococcus horikoshii. Acta Crystallogr. D Biol. Crystallogr. 64, 1012-1019.   DOI
22 Hasinoff, B.B. (1984). Kinetics of carbonic anhydrase catalysis in solvents of increased viscosity: a partially diffusion-controlled reaction. Arch. Biochem. Biophys. 233, 676-681.   DOI
23 Heinig, M. and Frishman, D. (2004). STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. 32, W500-W502.   DOI
24 Huang, S., Xue, Y., Sauer-Eriksson, E., Chirica, L., Lindskog, S., and Jonsson, B.H. (1998). Crystal structure of carbonic anhydrase from Neisseria gonorrhoeae and its complex with the inhibitor acetazolamide. J. Mol. Biol. 283, 301-310.   DOI
25 Iverson, T.M., Alber, B.E., Kisker, C., Ferry, J.G., and Rees, D.C. (2000). A closer look at the active site of gamma-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39, 9222-9231.   DOI
26 James, P., Isupov, M.N., Sayer, C., Saneei, V., Berg, S., Lioliou, M., Kotlar, H.K., and Littlechild, J.A. (2014). The structure of a tetrameric alpha-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability. Acta Crystallogr. D Biol. Crystallogr. 70, 2607-2618.   DOI
27 Jo, B.H., Park, T.Y., Park, H.J., Yeon, Y.J., Yoo, Y.J., and Cha, H.J. (2016). Engineering de novo disulfide bond in bacterial alpha-type carbonic anhydrase for thermostable carbon sequestration. Sci. Rep. 6, 29322.   DOI
28 Kimber, M.S. and Pai, E.F. (2000). The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J. 19, 1407-1418.   DOI
29 Kanth, B.K., Jun, S.Y., Kumari, S., and Pack, S.P. (2014). Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: its expression and characterization for $CO_2$-sequestration applications. Proc. Biochem. 49, 2114-2121.   DOI
30 Kikutani, S., Nakajima, K., Nagasato, C., Tsuji, Y., Miyatake, A., and Matsuda, Y. (2016). Thylakoid luminal theta-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. U. S. A. 113, 9828-9833.   DOI
31 Kuntz, I.D., Jr. (1971). Hydration of macromolecules. III. Hydration of polypeptides. J. Am. Chem. Soc. 93, 514-516.   DOI
32 Mamo, G., Hatti-Kaul, R., and Mattiasson, B. (2006). A thermostable alkaline active endo-beta-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme Microb. Technol. 39, 1492-1498.   DOI
33 Lane, T.W., Saito, M.A., George, G.N., Pickering, I.J., Prince, R.C., and Morel, F.M. (2005). Biochemistry: a cadmium enzyme from a marine diatom. Nature 435, 42.
34 Liljas, A., Kannan, K.K., Bergsten, P.C., Waara, I., Fridborg, K., Strandberg, B., Carlbom, U., Jarup, L., Lovgren, S., and Petef, M. (1972). Crystal structure of human carbonic anhydrase C. Nat. New Biol. 235, 131-137.   DOI
35 Macauley, S.R., Zimmerman, S.A., Apolinario, E.E., Evilia, C., Hou, Y.M., Ferry, J.G., and Sowers, K.R. (2009). The archetype gamma-class carbonic anhydrase (Cam) contains iron when synthesized in vivo. Biochemistry 48, 817-819.   DOI
36 Merz, K.M., Jr. (1990). Insights into the function of the zinc hydroxide-Thr199-Glu106 hydrogen bonding network in carbonic anhydrases. J. Mol. Biol. 214, 799-802.   DOI
37 Manikandan, K., Bhardwaj, A., Gupta, N., Lokanath, N.K., Ghosh, A., Reddy, V.S., and Ramakumar, S. (2006). Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci. 15, 1951-1960.   DOI
38 Martensson, L.G., Karlsson, M., and Carlsson, U. (2002). Dramatic stabilization of the native state of human carbonic anhydrase II by an engineered disulfide bond. Biochemistry 41, 15867-15875.   DOI
39 Meldrum, N.U. and Roughton, F.J. (1933). Carbonic anhydrase. Its preparation and properties. J. Physiol. 80, 113-142.   DOI
40 Merz, K.M., Jr. (1991). Carbon dioxide binding to human carbonic anhydrase II. J. Am. Chem. Soc. 113, 406-411.   DOI
41 Pocker, Y. and Janjic, N. (1987). Enzyme kinetics in solvents of increased viscosity. Dynamic aspects of carbonic anhydrase catalysis. Biochemistry 26, 2597-2606.   DOI
42 Mitsuhashi, S., Mizushima, T., Yamashita, E., Yamamoto, M., Kumasaka, T., Moriyama, H., Ueki, T., Miyachi, S., and Tsukihara, T. (2000). X-ray structure of beta-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for $CO_2$ hydration. J. Biol. Chem. 275, 5521-5526.   DOI
43 Modak, J.K., Liu, Y.C., Machuca, M.A., Supuran, C.T., and Roujeinikova, A. (2015). Structural basis for the inhibition of Helicobacter pylori alpha-carbonic anhydrase by sulfonamides. PLoS One 10, e0127149.   DOI
44 Nair, S.K., Krebs, J.F., Christianson, D.W., and Fierke, C.A. (1995). Structural basis of inhibitor affinity to variants of human carbonic anhydrase II. Biochemistry 34, 3981-3989.   DOI
45 Neish, A.C. (1939). Studies on chloroplasts: their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem. J. 33, 300-308.   DOI
46 Nienaber, L., Cave-Freeman, E., Cross, M., Mason, L., Bailey, U.M., Amani, P., Davis, R.A., Taylor, P., and Hofmann, A. (2015). Chemical probing suggests redox-regulation of the carbonic anhydrase activity of mycobacterial Rv1284. FEBS J. 282, 2708-2721.   DOI
47 Roberts, S.B., Lane, T.W., and Morel, F.M.M. (1997). Carbonic anhydrase in the marine diatom thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 33, 845-850.   DOI
48 Mirjafari, P., Asghari, K., and Mahinpey, N. (2007). Investigating the application of enzyme carbonic anhydrase for $CO_2$ sequestration purposes. Ind. Eng. Chem. Res. 46, 921-926.   DOI
49 Rowlett, R.S. (2010). Structure and catalytic mechanism of the betacarbonic anhydrases. Biochim. Biophys. Acta 1804, 362-373.   DOI
50 Alber, BE. and Ferry, J.G. (1994). A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. U. S. A. 91, 6909-6913.   DOI
51 Alterio, V., Langella, E., De Simone, G., and Monti, S.M. (2015). Cadmium-containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii. Mar. Drugs 13, 1688-1697.   DOI
52 Tashian, R.E. (1989). The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays 10, 186-192.   DOI
53 Silverman, D.N. and Lindskog, S. (1988). The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc. Chem. Res. 21, 30-36.   DOI
54 Silverman, D.N. and Vincent, S.H. (1983). Proton transfer in the catalytic mechanism of carbonic anhydrase. CRC Crit. Rev. Biochem. 14, 207-255.   DOI
55 Smith, K.S., Jakubzick, C., Whittam, T.S., and Ferry, J.G. (1999). Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc. Natl. Acad. Sci. U. S. A. 96, 15184-15189.   DOI
56 Somalinga, V., Buhrman, G., Arun, A., Rose, R.B., and Grunden, A.M. (2016). A high-resolution crystal structure of a psychrohalophilic alpha-carbonic anhydrase from Photobacterium profundum reveals a unique dimer interface. PLoS One 11, e0168022.   DOI
57 Suarez Covarrubias, A., Larsson, A.M., Hogbom, M., Lindberg, J., Bergfors, T., Bjorkelid, C., Mowbray, S.L., Unge, T., and Jones, T.A. (2005). Structure and function of carbonic anhydrases from Mycobacterium tuberculosis. J. Biol. Chem. 280, 18782-18789.   DOI
58 Tripp, B.C., Bell, C.B., 3rd., Cruz, F., Krebs, C., and Ferry, J.G. (2004). A role for iron in an ancient carbonic anhydrase. J. Biol. Chem. 279, 6683-6687.   DOI
59 Vidgren, J., Liljas, A., and Walker, N.P. (1990). Refined structure of the acetazolamide complex of human carbonic anhydrase II at 1.9 A. Int. J. Biol. Macromol. 12, 342-344.   DOI
60 Wilbur, K.M. and Anderson, N.G. (1948). Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147-154.   DOI
61 Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., and Morel, F.M. (2008). Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452, 56-61.   DOI