Browse > Article
http://dx.doi.org/10.4014/jmb.1703.03080

Designing Signal Peptides for Efficient Periplasmic Expression of Human Growth Hormone in Escherichia coli  

Jeiranikhameneh, Meisam (Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB))
Moshiri, Farzaneh (Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB))
Falasafi, Soheil Keyhan (Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB))
Zomorodipour, Alireza (Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB))
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.11, 2017 , pp. 1999-2009 More about this Journal
Abstract
The secretion efficiency of a protein in a Sec-type secretion system is mainly determined by an N-terminal signal peptide and its combination with its cognate protein. Five signal peptides, namely, two synthetic Sec-type and three Bacillus licheniformis alpha-amylase-derived signal peptides, were compared for periplasmic expression of the human growth hormone (hGH) in E. coli. Based on in silico predictions on the signal peptides' cleavage efficiencies and their corresponding mRNA secondary structures, a number of amino acid substitutions and silent mutations were considered in the modified signal sequences. The two synthetic signal peptides, specifically designed for hGH secretion in E. coli, differ in their N-terminal positively charged residues and hydrophobic region lengths. According to the mRNA secondary structure predictions, combinations of the protein and each of the five signal sequences could lead to different outcomes, especially when accessibility of the initiator ATG and ribosome binding sites were considered. In the experimental stage, the two synthetic signal peptides displayed complete processing and resulted in efficient secretion of the mature hGH in periplasmic regions, as was demonstrated by protein analysis. The three alpha-amylase-derived signal peptides, however, were processed partially from their precursors. Therefore, to achieve efficient secretion of a protein in a heterologous system, designing a specific signal peptide by using a combined approach of optimizations of the mRNA secondary structure and the signal peptide H-domain and cleavage site is recommended.
Keywords
Signal peptide; human growth hormone; periplasmic space; Escherichia coli; alpha-amylase; mRNA secondary structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kane JF. 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 494-500.   DOI
2 Zhang W, Xiao W, Wei H, Zhang J, Tian Z. 2006. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem. Biophys. Res. Commun. 349: 69-78.   DOI
3 Duffaud G, Inouye M. 1988. Signal peptidases recognize a structural feature at the cleavage site of secretory proteins. J. Biol. Chem. 263: 10224-10228.
4 Shahhoseini M, Ziaee AA, Ghaemi N. 2003. Expression and secretion of an alpha-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. J. Appl. Microbiol. 95:1250-1254.   DOI
5 Nilsson I, von Heijne G. 1991. A de novo designed signal peptide cleavage cassette functions in vivo. J. Biol. Chem. 266: 3408-3410.
6 Karamyshev AL, Karamysheva ZN, Kajava AV, Ksenzenko VN, Nesmeyanova MA. 1998. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. J. Mol. Biol. 277: 859-870.   DOI
7 Das S, Paul S, Chatterjee S, Dutta C. 2005. Codon and amino acid usage in two major human pathogens of genus Bartonella - optimization between replicational-transcriptional selection, translational control and cost minimization. DNA Res. 12:91-102.   DOI
8 Ramachandiran V, Kramer G, Hardesty B. 2000. Expression of different coding sequences in cell-free bacterial and eukaryotic systems indicates translational pausing on Escherichia coli ribosomes. FEBS Lett. 482: 185-188.   DOI
9 McNulty DE, Claffee BA, Huddleston MJ, Porter ML, Cavnar KM, Kane JF. 2003. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr. Purif. 27: 365-374.   DOI
10 Mattanovich D, Kramer W, Luttich C, Weik R, Bayer K, Katinger H. 1998. Rational design of an improved induction scheme for recombinant Escherichia coli. Biotechnol. Bioeng. 58: 296-298.   DOI
11 Ma CK, Kolesnikow T, Rayner JC, Simons EL, Yim H, Simons RW. 1994. Control of translation by mRNA secondary structure: the importance of the kinetics of structure formation. Mol. Microbiol. 14: 1033-1047.   DOI
12 Paulus M, Haslbeck M, Watzele M. 2004. RNA stem-loop enhanced expression of previously non-expressible genes. Nucleic Acids Res. 32: e78.   DOI
13 Chang JT, Green CB, Wolf RE Jr. 1995. Inhibition of translation initiation on Escherichia coli gnd mRNA by formation of a long-range secondary structure involving the ribosome binding site and the internal complementary sequence. J. Bacteriol. 177: 6560-6567.   DOI
14 Brunel C, Romby P, Sacerdot C, de Smit M, Graffe M, Dondon J, et al. 1995. Stabilised secondary structure at a ribosomal binding site enhances translational repression in E. coli. J. Mol. Biol. 253: 277-290.   DOI
15 de Smit MH, van Duin J. 1994. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244: 144-150.   DOI
16 Nielsen H, Brunak S, von Heijne G. 1999. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 12: 3-9.   DOI
17 Hiller K, Grote A, Scheer M, Munch R, Jahn D. 2004. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32: W375-W379.   DOI
18 Claros MG, von Heijne G. 1994. TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10: 685-686.
19 Libby RT, Braedt G, Kronheim SR, March CJ, Urdal DL, Chiaverotti TA, et al. 1987. Expression and purification of native human granulocyte-macrophage colony-stimulating factor from an Escherichia coli secretion vector. DNA 6: 221-229.   DOI
20 Sambrook J, Russell D. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
21 Jeiranikhameneh M, Razavi MR, Irani S, Siadat SD, Oloomi M. 2017. Designing novel construction for cell surface display of protein E on Escherichia coli using non-classical pathway based on Lpp-OmpA. AMB Express 7: 53.   DOI
22 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.   DOI
23 Becker GW, Hsiung HM. 1986. Expression, secretion and folding of human growth hormone in Escherichia coli. Purification and characterization. FEBS Lett. 204: 145-150.   DOI
24 Jorgensen KD. 1987. Comparison of the pharmacological properties of pituitary and biosynthetic human growth hormone. Demonstration of antinatriuretic/antidiuretic and barbital sleep effects of human growth hormone in rats. Acta Endocrinol. (Copenh.) 114: 124-131.
25 Hindmarsh PC, Brook CG. 1987. Effect of growth hormone on short normal children. Br. Med. J. (Clin. Res. Ed.) 295:573-577.   DOI
26 Hsiung HM, Cantrell A, Luirink J, Oudega B, Veros AJ, Becker GW. 1989. Use of bacteriocin release protein in E. coli for excretion of human growth hormone into the culture medium. Nat. Biotechnol. 7: 267-271.   DOI
27 Gombert AK, Kilikian BV. 1998. Recombinant gene expression in Escherichia coli cultivation using lactose as inducer. J. Biotechnol. 60: 47-54.   DOI
28 Marston FA. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240: 1-12.   DOI
29 Hoang TT, Ma Y, Stern RJ, McNeil MR, Schweizer HP. 1999. Construction and use of low-copy number T7 expression vectors for purification of problem proteins: purification of Mycobacterium tuberculosis RmlD and Pseudomonas aeruginosa LasI and RhlI proteins, and functional analysis of purified RhlI. Gene 237: 361-371.   DOI
30 Neubauer P, Hofmann K, Holst O, Mattiasson B, Kruschke P. 1992. Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Appl. Microbiol. Biotechnol. 36: 739-744.
31 Curless CE, Pope J, Loredo L, Tsai LB. 1994. Effect of preinduction specific growth rate on secretion of granulocyte macrophage colony stimulating factor by Escherichia coli. Biotechnol. Prog. 10: 467-471.   DOI
32 Driessen AJ, Fekkes P, van der Wolk JP. 1998. The Sec system. Curr. Opin. Microbiol. 1: 216-222.   DOI
33 Martoglio B, Dobberstein B. 1998. Signal sequences: more than just greasy peptides. Trends Cell Biol. 8: 410-415.   DOI
34 Klinkert B, Elles I, Nickelsen J. 2006. Translation of chloroplast psbD mRNA in Chlamydomonas is controlled by a secondary RNA structure blocking the AUG start codon. Nucleic Acids Res. 34: 386-394.   DOI
35 Pandey JP, Gorla P, Manavathi B, Siddavattam D. 2009. mRNA secondary structure modulates the translation of organophosphate hydrolase (OPH) in E. coli. Mol. Biol. Rep. 36: 449-454.   DOI
36 Massa G, Vanderschueren-Lodeweyckx M, Bouillon R. 1993. Five-year follow-up of growth hormone antibodies in growth hormone deficient children treated with recombinant human growth hormone. Clin. Endocrinol. (Oxf.) 38: 137-142.   DOI
37 Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415.   DOI
38 Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. 1994. Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125: 167-188.   DOI
39 Mukhija R, Rupa P, Pillai D, Garg LC. 1995. High-level production and one-step purification of biologically active human growth hormone in Escherichia coli. Gene 165: 303-306.   DOI
40 Ghorpade A, Garg LC. 1993. Efficient processing and export of human growth hormone by heat labile enterotoxin chain B signal sequence. FEBS Lett. 330: 61-65.   DOI
41 Ahangari G, Ostadali MR, Rabani A, Rashidian J, Sanati MH, Zarindast MR. 2004. Growth hormone antibodies formation in patients treated with recombinant human growth hormone. Int. J. Immunopathol. Pharmacol. 17: 33-38.   DOI
42 Kipriyanov SM, Moldenhauer G, Little M. 1997. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J. Immunol. Methods 200: 69-77.   DOI
43 Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538.
44 Nakazawa K, Takano T, Sohma A, Yamane K. 1986. Secretion activities of Bacillus subtilis alpha-amylase signal peptides of different lengths in Escherichia coli cells. Biochem. Biophys. Res. Commun. 134: 624-631.   DOI
45 Sockolosky JT, Szoka FC. 2013. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expr. Purif. 87: 129-135.   DOI
46 Nakamura K, Fujita Y, Itoh Y, Yamane K. 1989. Modification of length, hydrophobic properties and electric charge of Bacillus subtilis alpha-amylase signal peptide and their different effects on the production of secretory proteins in B. subtilis and Escherichia coli cells. Mol. Gen. Genet. 216: 1-9.   DOI
47 Suominen I, Meyer P, Tilgmann C, Glumoff T, Glumoff V, Kapyla J, et al. 1995. Effects of signal peptide mutations on processing of Bacillus stearothermophilus alpha-amylase in Escherichia coli. Microbiology 141: 649-654.   DOI
48 Kiany J, Zomorodipour A, Ahmadzadeh Raji M, Sanati MH. 2003. Construction of recombinant plasmids for periplasmic expression of human growth hormone in Escherichia coli under T7 and lac promoters. J. Sci. Islam. Repub. 14: 311-316.
49 Ghasemi F, Zomorodipour A, Shojai S, Ataei F, Khodabandeh M, Sanati MH. 2004. Using L-arabinose for production of human growth hormone in Escherichia coli, studying the processing of gIII:: hGH precursor. Iran. J. Biotechnol. 2: 250-260.
50 Chung BH, Sohn M-J, Oh S-W, Park U-S, Poo H, Kim BS, et al. 1998. Overproduction of human granulocyte-colony stimulating factor fused to the pelB signal peptide in Escherichia coli. J. Ferment. Bioeng. 85: 443-446.   DOI
51 Cheah KC, Harrison S, King R, Crocker L, Wells JR, Robins A. 1994. Secretion of eukaryotic growth hormones in Escherichia coli is influenced by the sequence of the mature proteins. Gene 138: 9-15.   DOI
52 Berges H, Joseph-Liauzun E, Fayet O. 1996. Combined effects of the signal sequence and the major chaperone proteins on the export of human cytokines in Escherichia coli. Appl. Environ. Microbiol. 62: 55-60.
53 Le Calvez H, Green JM, Baty D. 1996. Increased efficiency of alkaline phosphatase production levels in Escherichia coli using a degenerate PelB signal sequence. Gene 170: 51-55.   DOI
54 Denefle P, Kovarik S, Ciora T, Gosselet N, Benichou JC, Latta M, et al. 1989. Heterologous protein export in Escherichia coli: influence of bacterial signal peptides on the export of human interleukin 1 beta. Gene 85: 499-510.   DOI
55 Jana S, Deb JK. 2005. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67: 289-298.   DOI