• Title/Summary/Keyword: hydrolyzed ginseng extract

Search Result 8, Processing Time 0.023 seconds

Effect of $\alpha$-Amylase on the Qualities of Red Ginseng Extract

  • Kim, Na-Mi;Lee, Jong-Soo;Lee, Byung-H.
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.153-156
    • /
    • 2000
  • In order to improve the qualities of red ginseng extract and decrease precipitate formation in ginseng drink, red ginseng extract were hydrolyzed with ${\alpha}$-Amylase and characteristics of the hydrolyzed ginseng extract were investigated. 1.08% of isomaltose were produced and glucose content was increased from 2.83% to 11.03% in the hydrolyzed red ginseng extract. Total ginsenoside content of the hydrolyzed ginseng extract were decreased from 1,661 mg/100g extract to 1,389 mg/100g extract. The hydrolyzed ginseng extract enhanced the growth of Lactobacillus casei, Lactobacillus rhamnosus and Lactobacillus helveticus. Bitterness and astringency of the hydrolyzed ginseng extract were lower than those of the ginseng extract Precipitate formations in ginseng drink prepared with the hydrolyzed ginseng extract were significantly reduced in the storage conditions of 40$^{\circ}C$ for 4 weeks compared to those of control.

  • PDF

Controls of the Hydrolysis of Ginseng Saponins by Neutralization of Organic Acids in Red Ginseng Extract Preparations (홍삼의 가열추출 과정중 유기산 중화에 의한 사포닌의 가수분해 억제)

  • 김천석;최강주
    • Journal of Ginseng Research
    • /
    • v.22 no.3
    • /
    • pp.205-210
    • /
    • 1998
  • Glucosidic bonds at the C20 position of the sapogenins were hydrolyzed easily in the lower pH, higher temperatures and longer times to give prosapogenins and sugars. The glucosidic bond of saponin at the C3 of ginsenoside-Rb1, which is secondary carbon, was relatively stable due to the low electron density of -0.2. But the bond of saponin at the C20 position, which is tertiary carbon with the relatively high electron density of -0.3, was liable to be hydrolyzed even in weakly acidic solution by the increase of heating time. On the other hand, red ginseng contained 13.34 mg/g of citric acid, 8.78 mg/g of malonic acid, 3.70 mg/g of oxalic acid, 2.13 mg/g of malic acid and 0.44 mg/g of succinct acid. Ginseng saponins were very stable in ginseng extract neutralized with sodium carbonate or sodium bicarbonate corresponding to the equivalent amount of the total organic acid in the red ginseng.

  • PDF

An 8-wk, randomized, double-blind, placebo-controlled clinical trial for the antidiabetic effects of hydrolyzed ginseng extract

  • Park, Soo-Hyun;Oh, Mi-Ra;Choi, Eun-Kyung;Kim, Min-Gul;Ha, Ki-Chan;Lee, Seung-Kwon;Kim, Young-Gon;Park, Byung-Hyun;Kim, Dal-Sik;Chae, Soo-Wan
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.239-243
    • /
    • 2014
  • Background: To investigate the antidiabetic effects of hydrolyzed ginseng extract (HGE) for Korean participants in an 8-wk, randomized, double-blinded, placebo-controlled clinical trial. Methods: Impaired fasting glucose participants [fasting plasma glucose (FPG) ${\geq}5.6mM$ or < 6.9mM who had not been diagnosed with any disease and met the inclusion criteria were recruited for this study. The 23 participants were randomly divided into either the HGE (n = 12, 960 mg/d) or placebo (n = 11) group. Outcomes included measurements of efficacy (FPG, postprandial glucose, fasting plasma insulin, postprandial insulin, homeostatic model assessment-insulin resistance, and homeostatic model assessment-${\beta}$) and safety (adverse events, laboratory tests, electrocardiogram, and vital signs). Results: After 8 wk of HGE supplementation, FPG and postprandial glucose were significantly decreased in the HGE group compared to the placebo group. No clinically significant changes in any safety parameter were observed. Our study revealed that HGE is a potent antidiabetic agent that does not produce noticeable adverse effects. Conclusion: HGE supplementation may be effective for treating impaired fasting glucose individuals.

Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism

  • Ju, Sunghee;Seo, Ji Yeon;Lee, Seung Kwon;Oh, Jisun;Kim, Jong-Sang
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.108-118
    • /
    • 2021
  • Background: Korean ginseng (Panax ginseng Meyer) contains a variety of ginsenosides that can be metabolized to a biologically active substance, compound K. Previous research showed that compound K could be enriched in the red ginseng extract (RGE) after hydrolysis by pectinase. The current study investigated whether the enzymatically hydrolyzed red ginseng extract (HRGE) containing a notable level of compound K has cognitive improving and neuroprotective effects. Methods: A scopolamine-induced hypomnesic mouse model was subjected to behavioral tasks, such as the Y-maze, passive avoidance, and the Morris water maze tests. After sacrificing the mice, the brains were collected, histologically examined (hematoxylin and eosin staining), and the expressions of antioxidant proteins analyzed by western blot. Results: Behavioral assessment indicated that the oral administration of HRGE at a dosage of 300 mg/kg body weight reversed scopolamine-induced learning and memory deficits. Histological examination demonstrated that the hippocampal damage observed in scopolamine-treated mouse brains was reduced by HRGE administration. In addition, HRGE administration increased the expression of nuclear-factor-E2-related factor 2 and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase and heme oxygenase-1 in hippocampal tissue homogenates. An in vitro assay using HT22 mouse hippocampal neuronal cells demonstrated that HRGE treatment attenuated glutamate-induced cytotoxicity by decreasing the intracellular levels of reactive oxygen species. Conclusion: These findings suggest that HRGE administration can effectively alleviate hippocampus-mediated cognitive impairment, possibly through cytoprotective mechanisms, preventing oxidative-stress-induced neuronal cell death via the upregulation of phase 2 antioxidant molecules.

Enzymatic transformation of ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) extract prepared by Spezyme and Optidex

  • Choi, Hyeon-Son;Kim, Sun Young;Park, Yooheon;Jung, Eun Young;Suh, Hyung Joo
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.264-269
    • /
    • 2014
  • Background: In this study, we examined the effects of various enzymes on chemical conversions of ginsenosides in ginseng extract prepared by amylases. Methods: Rapidase, Econase CE, Viscozyme, Ultraflo L, and Cytolase PCL5 were used for secondary enzymatic hydrolysis after amylase treatment of ginseng extract, and ginsenoside contents, skin permeability, and chemical compositions including total sugar, acidic polysaccharide, and polyphenols were determined on the hydrolyzed ginseng extract. Results: Rapidase treatment significantly elevated total ginsenoside contents compared with the control (p < 0.05). In particular, deglycosylated ginsenosides including Rg3, which are known as bioactive compounds, were significantly increased after Rapidase treatment (p < 0.05). The Rapidase-treated group also increased the skin permeability of polyphenols compared with the control, showing the highest level of total sugar content among the enzyme treatment groups. Conclusion: This result showed that Rapidase induced the conversion of ginsenoside glycosides to aglycones. Meanwhile, Cytolase PCL5 and Econase treatments led to a significant increase of uronic acid (acidic polysaccharide) level. Taken together, our data showed that the treatments of enzymes including Rapidase are useful for the conversion and increase of ginsenosides in ginseng extracts or products.

Properties of the Mixed Fermentation Milk Added with Red Ginseng Extract (홍삼 추출물 첨가 혼합 발효유의 특성)

  • Bae Hyoung-Churl;Nam Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2006
  • This experiment was carried out to examine the fermentation properties of yogurt with bovine milk and soybean milk at the mixed ratio of 2:1 and added 0.1, 0.2, 0.4 and 1.0% red ginseng extract. The effect on promoting the fermentation by additives 0.1, 0.2, 0.4 and 1.0% red ginseng extracts were higher and pH was $3.90{\sim}3.94$ when Lactobacillus acidophilus KCTC3150 and Lactobacillus salivarius ssp. salivarius CNU27 were used. Titratable acidity showed a little inhibiting due to increasing red ginseng extract content. The average viable counts of lactic acid bacteria after 15 hour culture was the highest level of $6.26{\times}10^8cfu/mL$ when Lactobacillus acidophilus KCTC3150 was used, and the additives content of red ginseng extract was 1.0% The production of lactic acid was the highest and the concentration was 332.22 mM when Lactobacillus acidophilus KCTC3150 was used, and the additives content of red ginseng extracts was 1.0% Lactose hydrolysis was completely hydrolyzed when Lactobacillus acidophilus KCTC3150 and Lactobacillus salivarius ssp. salivarius CNU27 were used. The highest viscosity of yogurt was 780 cP when Lactobacillus acidophilus KCTC3150 and Lactobacillus salivarius subsp. salivarius CNU27 were used and red ginseng extract was added 1.0% The overall acceptability, $4.17{\pm}0.64$, was the highest when Lactobacillus salivarius subsp. salivarius CNU27 was used and the additives content of red ginseng extract was 0.2%.

Property and Inhibition of the Hydrolysis of Ginseng Saponins by Organic Acids Neutralization in Ginseng Extract Preparations (인삼(人蔘)의 가열추출(加熱抽出) 과정(過程) 중 사포닌의 가수분해(加水分解) 특성(特性) 및 유기산중화(有機酸中和)에 의한 분해억제(分解抑制))

  • Jeong, Seung-Ii;Lee, Yong-Gu;Kim, Cheon-Suk;Lee, Seong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.4
    • /
    • pp.305-310
    • /
    • 1998
  • Glucosidic bond at the $C_{20}$ position of the sapogenins was hydrolyzed easily in the lower pH, higher temperature and longer time to give prosapogenins and sugars. The glucosidic bond of saponin at the $C_3\;of\; ginsenoside-Rb_1\;$, which is secondary carbon, was relatively stable due to the low electron density of -0.2. But the bond of saponin at the $C_{20}$ position, which is tertiary carbon with the relatively high electron density of -0.3, was liable to be hydrolyzed even in weak acidic solution by the increase of heating time. On the other hand, fresh and white ginseng contained 4.12 mg/g, 13.05 mg/g of citric acid, 0.68 mg/g, 2.18 mg/g of malonic acid, 1.13 mg/g, 3.68 mg/g of oxalic acid, 2.68 mg/g, 8.62 mg/g of malic acid and 0.13 mg/g, 0.46 mg/g of succinic acid, respectively. Ginseng saponins were very stable in ginseng extract neutralized with sodium carbonate or sodium bicarbonate corresponding to the equivalent amount of the total organic acid in the ginseng.

  • PDF

Isolation of Immunomodulatory Antitumor Active Polysaccharide (RGAP) from Red Ginseng By-Product and Its Physico-chemical Properties (홍삼추출잔사로부터 항암면역조절 활성을 보여주는 홍삼산성다당체(RGAP)의 분리 및 이화학적 특성)

  • Kwak, Yi-Seong;Shin, Han-Jae;Song, Yong-Bum;Park, Jong-Dae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.752-757
    • /
    • 2003
  • This study was carried out in order to develop the method for isolation of red ginseng acidic polysaccharide (RGAP) haying immunomodulating antitumor activity from red ginseng by-product. The red ginseng by-product was obtained from red ginseng residues produced in processing of red ginseng ethanol extract. The yield of RGAP isolated by ultrafiltration was 20.9%. The active substance (GFP) was purified by DEAE-sepharose column chromatography RGAP induced nitric oxide (NO) exhibited tumoricidal activities against P8l5 (mastocytoma) tumor cells. Acid-hydrolyzed RGAP fragments were shown four to five spots. These sopts showed the same R$_{f}$ values with sugars designated as rhamnose, glucose, glactose and glucuronic acid. Some physico-chemical properties of RGAP were investigated. pH and dry reduction content at 105$^{\circ}C$ were 4.74 and 4.72%, respectively. Crude protein, ash and Pb contents were 3.30%, 4.74% and 2.30 ppm. These results suggest that we will be able to produce RGAP from red ginseng by-product by ultrafiltration in a large scale.e.