• Title/Summary/Keyword: hydrolytic enzyme

Search Result 148, Processing Time 0.029 seconds

Biotransformation of Amides to Acids Using a Co-Cross-Linked Enzyme Aggregate of Rhodococcus erythropolis Amidase

  • Park, Hyun-Joo;Uhm, Ki-Nam;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.325-331
    • /
    • 2010
  • Rhodococcus erythropolis amidase was expressed in Escherichia coli cells. The crude amidase in the cell-free extract was immobilized using the cross-linked enzyme aggregate (CLEA) method. The crude amidase was mixed with bovine serum albumin and then precipitated with ammonium sulfate. The resultant precipitant was subsequently cross-linked with glutaraldehyde. Scanning electron microscopy revealed that this co-CLEA had a ball-like shape with a diameter of approximately $1\;{\mu}m$. This co-CLEA evidenced hydrolytic activity toward a variety of amide substrates. The amidase co-CLEA evidenced an optimum temperature of $60^{\circ}C$ and an optimum pH of 8.0, results that were similar to those of the soluble amidase. The reaction stability of the co-CLEA was increased. That is, it was stable up to $50^{\circ}C$ and in a pH range of 5.0-12.0. Additionally, the co-CLEA could be recovered by centrifugation, and retained 96% activity after 3 repeated cycles. This amidase co-CLEA may prove useful as a substitute for soluble amidase as a biocatalyst in the pharmaceutical and chemical industries.

Characterization of Low-Molecular-Weight Collagen from Korean Native Chicken Feet Hydrolyzed Using Alcalase

  • Heedong Woo;Gyeong A Jeong;Hyunwook Choi;Chang Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.656-661
    • /
    • 2023
  • The aims of this study were to optimize the preparation of low-molecular-weight collagen using a proteolytic enzyme (alcalase) derived from the feet of Korean native chickens, and to characterize the process of collagen hydrolysis. Foreign bodies from chicken feet were removed using ultrasonication at 28 kHz with 1.36 kW for more than 25 min. The hydrolytic pattern and molecular weight distribution of enzyme-treated collagen from chicken feet were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography, respectively. Ideally, chicken feet should be treated at 100℃ for 8 h to obtain a high collagen content using hot water extraction. The collagen content of the chicken foot extract was 13.9 g/100 g, and the proportion of low-molecular-weight collagen increased with increasing proteolytic enzyme concentration and reaction time. When treated with 1% alcalase, the average molecular weight of collagen decreased rapidly to 4,929 Da within 5 h and thereafter decreased at a slower rate, reaching 4,916 Da after 7 h. Size exclusion chromatography revealed that low-molecular-weight collagen peptides of approximately 1,000-5,000 Da were obtained after hydrolysis with 1% alcalase for 1 h.

Cloning, Characterization of Pichia etchellsii $\beta-Glucosidase$ II and Effect of Media Composition and Feeding Strategy on its Production in a Bioreactor

  • Sethi Benu;Jain Monika;Chowdhary Manish;Soni Yogesh;Bhatia Yukti;Sahai Vikram;Mishra Saroj
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.43-51
    • /
    • 2002
  • The cloning and expression of $\beta-glucosidase$ II, encoded by the gene ${\beta}glu2$, from thermotolerant yeast Pichia etchellsii into Escherichia coli is described. Cloning of the 7.3 kb BamHI/SalI yeast insert containing ${\beta}glu2$ in pUC18, which allowed for reverse orientation of the insert, resulted in better enzyme expression. Transformation of this plasmid into E. coli JM109 resulted in accumulation of the enzyme in periplasmic space. At $50^{\circ}C$, the highest hydrolytic activity of 1686 IU/g protein was obtained on sophorose. Batch and fed-batch techniques were employed for enzyme production in a 14 L bioreactor. Exponential feeding rates were determined from mass balance equations and these were employed to control specific growth rate and in turn maximize cell growth and enzyme production. Media optimization coupled with this strategy resulted in increased enzyme units of 1.2 kU/L at a stabilized growth rate of $0.14\;h^{-l}$. Increased enzyme production in bioreactor was accompanied by formation of inclusion bodies.

Production of Deglucose-ApioseXylosylated Platycosides from Glycosylated Platycosides by Crude Enzyme from Aspergillus tubingensis

  • Shin, Kyung-Chul;Kil, Tae-Geun;Kang, Su-Hwan;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.430-436
    • /
    • 2022
  • Platycosides, Platycodi radix (Platycodon grandiflorus root) saponins, are used as food supplements and exert diverse pharmacological activities. Deglycosylation of saponins enhances their biological efficacy, and deglycosylated platycosides are produced mainly through enzymatic hydrolysis. However, the types of available deglycosylated platycosides remain limited because of a lack of hydrolyzing enzymes that can act on specific glycosides in glycosylated platycosides. In this study, a crude enzyme from Aspergillus tubingensis converted platycoside E (PE) and polygalacin D3 (PGD3) into deglucose-apiose-xylosylated (deGAX)-platycodin D (PD) and deGAX-polygalacin D (PGD), respectively. The products were identified through LC/MS analysis by specifically hydrolyzing all glucose residues at C-3, and apiose and xylose residues at C-28 of platycoside. The hydrolytic activity of the crude enzyme obtained after the cultivation of the fungus using citrus pectin and corn steep solid as carbon and nitrogen sources, respectively, in culture medium was increased compared with those using other carbon and nitrogen sources. The crude enzyme from A. tubingensis was the most effective in producing deGAX platycoside at pH 5.0 and 60℃. The crude enzyme produced 0.32 mg/ml deGAX-PD and 0.34 mg/ml deGAX-PGD from 1 mg/ml PE and 1 mg/ml PGD3 (at pH 5.0 and 60℃) for 12 and 10 h, with productivities of 32.0 and 42.5 mg/l/h and molar yields of 62.1 and 59.6%, respectively. To the best of our knowledge, this is the first study to produce deGAX platycosides from glycosylated platycosides.

Anti-oxidant and Whitening Effects of Cell Lytic Enzyme-treated Lotus Leaf Extract (세포벽 분해효소 처리에 의한 연잎 추출물의 항산화 및 tyrosinase 저해 활성)

  • Choi, Sun-Ju;Kim, So-Young;Lee, Sung-Chul;Lee, Jin-Man;Lee, In-Suk;Jung, Moon-Yung;Yang, Sam-Man;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.579-583
    • /
    • 2009
  • The effects of cell lytic enzyme treatment on total phenolic content, antioxidant and antityrosinase activities of lotus leaf were investigated. The dried lotus leaves were hydroyzed by cell lytic enzymes such as Promozyme, Ceremix, Pectinex, Ultraflo, Celluclast, Pentopan, Tunicase, Viscozyme at their optimum pHs (pH 5-8) at $50^{\circ}C$ for 4 hrs. Depending on the enzymes used, total phenolic compounds content was measured as $1,079-1,476{\mu}g$/mL, and antioxidant activities and whitening activities were increased by 5~10% and 20%, respectively Among the tested hydrolytic enzymes, Promozyme (pullulanase) was selected as the most suitable enzyme for the extraction of total polyphenol from lotus leaf. The optimal dosage of Promozyme were found to be 1-2% (w/w). By Promozyme treatment, total phenolic compounds content of the lotus extract significantly increased compared to the extraction without enzyme treatment.

Analysis of the Involvement of Chitin-Binding Domain of ChiCW in Antifungal Activity, and Engineering a Novel Chimeric Chitinase with High Enzyme and Antifungal Activities

  • Huang, Chien-Jui;Guo, Shu-Huei;Chung, Shu-Chun;Lin, Yu-Ju;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1169-1175
    • /
    • 2009
  • An antifungal chitinase, ChiCW, produced by Bacillus cereus 28-9 is effective against conidial germination of Botrytis elliptica, the causal agent of lily leaf blight. ChiCW as a modular enzyme consists of a signal peptide, a catalytic domain, a fibronectin type-III-like domain, and a chitin-binding domain. When two C-terminal domains of ChiCW were truncated, $ChiCW{\Delta}FC$ (lacking the chitin-binding domain and fibronectin type III-like domain) lost its antifungal activity. Since $ChiCW{\Delta}C$ (lacking the chitin-binding domain) could not be expressed in Escherichia coli as $ChiCW{\Delta}FC$ did, a different strategy based on protein engineering technology was designed to investigate the involvement of the chitin-binding domain of ChiCW ($ChBD_{ChiCW}$) in antifungal activity in this study. Because ChiA1 of Bacillus circulans WL-12 is a modular enzyme with a higher hydrolytic activity than ChiCW but not inhibitory to conidial germination of Bo. elliptica and the similar domain composition of ChiA1 and ChiCW, the C-terminal truncated derivatives of ChiA1 were generated and used to construct chimeric chitinases with $ChBD_{ChiCW}$. When the chitin-binding domain of ChiA1 was replaced with $ChBD_{ChiCW}$, the chimeric chitinase named ChiAAAW exhibited both high enzyme activity and antifungal activity. The results indicate that $ChBD_{ChiCW}$ may play an important role in the antifungal activity of ChiCW.

Chemical Modification of Intracellular Cytosine Deaminase from Chromobacterium violaceum YK 391

  • Kim, Jung;Kim, Tae-Hyun;Yu, Tae-Shick
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. Amino acid residues located in or near the active sites of the intracellular cytosine deaminase from chromobacterium violaceum YK 391 were identified by chemical modification studies. The enzymic activity was completely inhibited by chemical modifiers, such as 1mM NBS, chloramine-T, $\rho-CMB,\;\rho-HMB$ and iodine, and was strongly inhibited by 1mM PMSF and pyridoxal 5'-phosphate. This chemical deactivation of the enzymic activity was reversed by a high concentration of cytosine. Furthermore, the deactivation of the enzymic activity by $\rho-CMB$ was also reversed by 1mM cysteine-HCI, DTT and 2-mercaptoethanol. These results suggested that cysteine, tryptophan and methionine residues might be located in or near the active sites of the enzyme, while serine and lysine were indirectly involved in the enzymic activity. The intracellular cytosine deaminase from C violaceum YK 391 was assumed to be a thiol enzyme.

Investigation of the Hydrolysis of Polysaccharides by Crude Cellulases prepared from Several Species of Fungi (몇 종류의 곰팡이에서 분리되는 Crude Cellulase의 다당류 분해능력의 조사)

  • 김은수;김영민;이인규;최태주
    • Korean Journal of Microbiology
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 1975
  • Crude cellulases freshly prepared from cultures of Aspergillus niger, Prnicillum motatum, Trichoderma vride 16273 and Trichoderma viride 16374 were assayed on 4 different substrates including Na-CMC, cellulose powder, starch and sucrose. Enzyme prepared from A. niger contained highly active hydrolytic enzymes of the 4 substrates assayed. P. notatum [yielded relatively lower amount of cellulase but the extracts were also highly reactive on starch and sucrose. Trichoderma viride 16274 yielded very little cellulase and invertase, but the extracts showed a high degree of amylase activity. Trichoderma viride 16374, however, yielded collulase comparable to that of Penicillium notatum, but lower activities of amylase and invertase were seen. Commercial cellulases prepared from Penicillium notatum (cellulase[K]) and Trichoderma viride(cellulase[J]) indicated enzyme activities closely parallel to the crude enzymes freshly prepared from fungus cultures. The optimum pH's of cellulolytic activities of cellulase[K] and cellulase[J] were 4.0 and 5.0 respectively. The optimum temperatures of the cellulolytic activities of cellulase[K] and cellualse[J] were 4.0 and 5.0 respectively. The optimum temperatures of the cellulolytic activities of cellulase [K] and cellulase [J] were $60{\circ}C$ and $50{\circ}C$ respectively. Assuming the average molecular weight of Na-CMC is about 115,000, the Km values of cellulase [K] and cellulase[J] were found to be $3.3{\times}10^{-5}/nM$ and $3.3{\times}10^{-4}/nM$ respectively.

  • PDF

Purification and Characterization of a Thermostable Xylanase from Fomitopsis pinicola

  • Shin, Keum;Jeya, Marimuthu;Lee, Jung-Kul;Kim, Yeong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1415-1423
    • /
    • 2010
  • An extracellular xylanase was purified to homogeneity by sequential chromatography of Fomitopsis pinicola culture supernatants on a DEAE-Sepharose column, a gel filtration column, and then on a MonoQ column with fast protein liquid chromatography. The relative molecular mass of the F. pinicola xylanase was determined to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by size-exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the xylanase had a pH optimum of 4.5 and a temperature optimum of $70^{\circ}C$. The enzyme showed a $t_{1/2}$ value of 33 h at $70^{\circ}C$ and catalytic efficiency ($k_{cat}=77.4\;s^{-1}$, $k_{cat}/K_m$=22.7 mg/ml/s) for oatspelt xylan. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase (GH) family 10, indicating that the F. pinicola xylanase is a member of GH family 10.

Screening and Characterization of an Enzyme with ${\beta}-Glucosidase$ Activity from Environmental DNA

  • Kim, Soo-Jin;Lee, Chang-Muk;Kim, Min-Young;Yeo, Yun-Soo;Yoon, Sang-Hong;Kang, Han-Cheol;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.905-912
    • /
    • 2007
  • A novel ${\beta}-glucosidase$ gene, bglA, was isolated from uncultured soil bacteria and characterized. Using genomic libraries constructed from soil DNA, a gene encoding a protein that hydrolyzes a fluorogenic analog of cellulose, 4-methylumbelliferyl ${\beta}-D-cellobioside$ (MUC), was isolated using a microtiter plate assay. The gene, bglA, was sequenced using a shotgun approach, and expressed in E. coli. The deduced 55-kDa amino acid sequence for bglA showed a 56% identity with the family 1 glycosyl hydrolase Chloroflexus aurantiacus. BglA included two conserved family 1 glycosyl hydrolase regions. When using $p-nitrophenyl-{\beta}-D-glucoside$ (pNPG) as the substrate, the maximum activity of the purified ${\beta}-glucosidase$ exhibited at pH 6.5 and $55^{\circ}C$, and was enhanced in the presence of $Mn^{2+}$. The $K_m\;and\;V_{max}$ values for the purified enzyme with pNPG were 0.16 mM and $19.10{\mu}mol/min$, respectively. The purified BglA enzyme hydrolyzed both pNPG and $p-nitrophenyl-{\beta}-D-fucoside$. The enzyme also exhibited substantial glycosyl hydrolase activities with natural glycosyl substrates, such as sophorose, cellobiose, cellotriose, cellotetraose, and cellopentaose, yet low hydrolytic activities with gentiobiose, salicin, and arbutin. Moreover, BglA was able to convert the major ginsenoside $Rb_1$ into the pharmaceutically active minor ginsenoside Rd within 24 h.