Browse > Article
http://dx.doi.org/10.4014/jmb.1003.03031

Purification and Characterization of a Thermostable Xylanase from Fomitopsis pinicola  

Shin, Keum (Department of Forest Products, Kookmin University)
Jeya, Marimuthu (Department of Chemical Engineering, Konkuk University)
Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University)
Kim, Yeong-Suk (Department of Forest Products, Kookmin University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.10, 2010 , pp. 1415-1423 More about this Journal
Abstract
An extracellular xylanase was purified to homogeneity by sequential chromatography of Fomitopsis pinicola culture supernatants on a DEAE-Sepharose column, a gel filtration column, and then on a MonoQ column with fast protein liquid chromatography. The relative molecular mass of the F. pinicola xylanase was determined to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by size-exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the xylanase had a pH optimum of 4.5 and a temperature optimum of $70^{\circ}C$. The enzyme showed a $t_{1/2}$ value of 33 h at $70^{\circ}C$ and catalytic efficiency ($k_{cat}=77.4\;s^{-1}$, $k_{cat}/K_m$=22.7 mg/ml/s) for oatspelt xylan. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase (GH) family 10, indicating that the F. pinicola xylanase is a member of GH family 10.
Keywords
Fomitopsis pinicola; glycoside hydrolase; purification; thermostability; xylanase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Maheshwari, R., G. Bharadwaj, and M. Bhat. 2000. Thermophilic fungi: Their physiology and enzymes. J. Microbiol. Molec. Biol. Rev. 64: 461-488.   DOI   ScienceOn
2 Zolotnitsky, G., U. Cogan, N. Adir, V. Solomon, G. Shoham, and Y. Shoham. 2004. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. Proc. Natl. Acad. Sci. U.S.A. 101: 11275-11280.   DOI   ScienceOn
3 de Vries, R. P. and J. Visser. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65: 497-522.   DOI   ScienceOn
4 Yu, E. K. C., L. U. L. Tan, M. K.-H. Chan, L. Deschatelets, and J. N. Saddler. 1987. Production of thermostable xylanase by a thermophilic fungus, Thermoascus aurantiacus. Enzyme Microb. Technol. 9: 16-24.   DOI   ScienceOn
5 Wakiyama, M., H. Tanaka, K. Yoshihara, S. Hayashi, and K. Ohta. 2008. Purification and properties of family-10 endo-1,$4-\beta- xylanase $ from Penicillium citrinum and structural organization of the encoding gene. J. Biosci. Bioeng. 105: 367-374.   DOI   ScienceOn
6 Wong, K. K. Y. and J. N. Saddler. 1992. Trichoderma xylanases, their properties and application. Crit. Rev. Biotechnol. 12: 413- 435.   DOI
7 Yan, Q. J., L. Wang, Z. Q. Jiang, S. Q. Yang, H. F. Zhu, and L. T. Li. 2009. A xylose-tolerant $\beta-xylosidase $ from Paecilomyces thermophila: Characterization and its co-action with the endogenous xylanase. Bioresource Technol. 99: 5402-5410.
8 Zhou, C., J. Bai, S. Deng, J. Wang, J. Zhu, M. Wu, and W. Wang. 2008. Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresour. Technol. 99: 831-838.   DOI   ScienceOn
9 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
10 Kerem, Z., K. Jensen, and K. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446: 49-54.   DOI   ScienceOn
11 Lee, J. W., K. S. Gwak, M. J. Park, D. H. Choi, M. Kown, and I. G. Choi. 2007. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J. Microbiol. 45: 485-491.   과학기술학회마을
12 Lee, J. W., J. Y. Park, M. Kwon, and I. G. Choi. 2009. Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. J. Biosci. Bioeng. 107: 33-37.   DOI   ScienceOn
13 Lucena-Neto, A. S. and E. X. F. Filho. 2004. Purification and characterization of a new xylanase from Humicola grisea var. thermoidea. Brazilian J. Microbiol. 35: 86-90.
14 Pell, G., E. J. Taylor, T. M. Gloster, J. P. Turkenburg, C. M. G. A. Fontes, L. M. A. Ferreira, et al. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605.   DOI   ScienceOn
15 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
16 Morris, D. D., M. D. Gibbs, C. W. J. Chin, M. H. Koh, K. K. Y. Wong, R. W. Allison, P. J. Nelson, and P. L. Bergquist. 1998. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl. Environ. Microbiol. 64: 1759-1765.
17 Ninawe, S., M. Kapoor, and R. C. Kuhad. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99: 1252-1258.   DOI   ScienceOn
18 Polizeli, M. L., A. C.Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Minireview. Appl. Microbiol. Biotechnol. 67: 577-591.   DOI   ScienceOn
19 Collins, T., C. Gerday, and G. Feller. 2005. Xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.   DOI   ScienceOn
20 Curotto, E., M. Concha, V. Campos, A. M. Milagres, and N. Duran. 1994. Production of extracellular xylanases by Penicillium janthinellum. Effect of selected growth conditions. Appl. Biochem. Biotechnol. 48: 107-116.   DOI   ScienceOn
21 Faulet, B. M., S. Niamke, J. T. Gonnety, and L. P. Kouamé. 2006. Purification and biochemical properties of a new thermostable xylanase from symbiotic fungus, Termitomyces sp. African J. Biotechnol. 5: 273-282.
22 Fujimoto, H., T. Ooi, S. L. Wang, T. Takizawa, H. Hidaka, S. Murao, and M. Arai. 1995. Purification and properties of three xylanases from Aspergillus aculeatus. Biosci. Biotech. Biochem. 59: 538-540.   DOI
23 Ito, S., A. Kuno, R. Suzuki, S. Kaneko, Y. Kawabana, I. Kusakabe, and T. Hasegawa. 2004. Rational affinity purification of native family 10 xylanase. J. Biotechnol. 110: 137-142.   DOI   ScienceOn
24 Fujimoto, Z., S. Kaneko, A. Kuno, H. Kobayashi, I. Kusakabe, and H. Mizuno. 2004. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J. Biol. Chem. 279: 9606- 9614.   DOI   ScienceOn
25 He, J., B. Yu, K. Zhang, X. Ding, and D. Chen. 2009. Expression of endo-1,$4-\beta-xylanase $ from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol. 9: 56.   DOI   ScienceOn
26 Henrissat, B. and A. Bairoch. 1996. Updating the sequencebased classification of glycosyl hydrolases. J. Biochem. 316: 695-696.   DOI
27 Jenkins, E. and A. V. Manohar. 1995. Chiral perturbation theory for vector mesons. Phys. Rev. Lett. 75: 2272-2275.   DOI   ScienceOn
28 Katapodis, P., W. Nerinckx, M. Claeyssens, and P. Christakopoulos. 2006. Purification and characterization of a thermostable intracellular $\beta-xylosidase $ from the thermophilic fungus Sporotrichum thermophile. Process Biochem. 41: 2402-2409.   DOI   ScienceOn
29 Baldrian, P. and V. Valaskova. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501-521.   DOI   ScienceOn
30 Baraznenok, V. A., E. G. Becker, N. V. Ankudimova, and N. N. Okunev. 1999. Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme Microb. Technol. 25: 651-659.   DOI   ScienceOn
31 Bhat, M. K. and G. P. Hazlewood. 2001. Enzymology and other characteristics of cellulases and xylanases, pp. 11-57. In M. Bedford and G. Partridge (eds.). Enzymes in Farm Animal Nutrition. CAB International.
32 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
33 Bruins, M. E., A. E. Janssen, and R. M. Boom. 2001. Thermozymes and their applications: A review of recent literature and patents. Appl. Biochem. Biotechnol. 90: 155-186   DOI   ScienceOn
34 Buchert, J., M. Tenkanen, A. Kantelinen, and L. Viikari. 1994. Application of xylanases in the pulp and paper industry. Bioresource Technol. 50: 65-72.   DOI   ScienceOn
35 Cheng, H. L., C. Y. Tsai, H. J. Chen, S. S. Yang, and Y. C. Chen. 2009. The identification, purification, and characterization of STXF10 expressed in Streptomyces thermonitrificans NTU- 88. Appl. Microbiol. Biotechnol. 82: 681-689.   DOI   ScienceOn