• 제목/요약/키워드: hydrolytic activity

검색결과 193건 처리시간 0.029초

감마선 조사가 장류제품의 가수분해효소 활성에 미치는 영향 (Effects of Gamma Irradiation on the Hydrolytic Enzyme Activities of Korean Soybean-Based Fermented Food)

  • 김동호;손준호;육홍선;김미리;차보숙;변명우
    • 한국식품영양과학회지
    • /
    • 제30권5호
    • /
    • pp.839-843
    • /
    • 2001
  • 감마선 조사를 이용한 장류제품의 미생물 살균 시, 감마선 조사가 장류제품의 효소활성에 미치는 영향을 살펴보기 위한여 된장, 고추장, 간장, 청국장, 메주에 5, 10, 20 kGy의 선량으로 감마선을 조사한 다음 amylase, protease, lipase 그리고 혈전용해효소 활성을 비교하였다. 가수분해효소의 활성은 메주, 청국장, 된장에서 대체로 높았고 간장과 고추장은 상대적으로 낮았다. Amylase, protease, lipase의 효소활성은 10 kGy까지의 감마선 조사에 의하여 영향을 받지 않았으며, 20 kGy의 감마선 조사구에서는 10% 내외의 효소활성 감소가 있었으나 청국장의 protease 활성감소(15%)를 제외하고는 통계적인 유의차가 없었다(p<0.05). 혈전용해효소 활성은 20 kGy까지의 감마선 조사에 의해서 효소활성 변화가 없었다.

  • PDF

Bacillus sp. N2 유래 leucine aminopeptidase의 가수분해활성에 대한 NaCl의 영향 (Effect of NaCl on Hydrolytic Activity of Leucine Aminopeptidase from Bacillus sp. N2)

  • 정동민;이강덕;전성식;정영철;전효곤
    • 생명과학회지
    • /
    • 제21권5호
    • /
    • pp.761-765
    • /
    • 2011
  • 효소의 염에 대한 안정성은 식품산업 응용에 있어서 중요한 인자이다. 이전에, leucine aminopeptidase (LAP)은 Bacillus sp. N2에서 정제되었다. 본 연구에서는, LAP효소의 염 효과에 관한 연구를 수행했다. LAP은 고농도의 NaCl (4 M)에서 L-leucine-${\rho}$-nitroanilide의 가수분해활성을 가지고 있지만, 다른 중성 염들(LiBr, LiCl, NaBr, KBr, KCl)에서는 활성이 없었다. 그 효소는 0-4 M NaCl 농도에서 C-말단 Xaa쪽에 소수성 아미노산과 친수성 아미노산을 가진 여러 di-peptide 합성 기질들을 가수분해하였는데, 이러한 결과는 LAP의 가수분해성은 기질의 Scissile bond에 있는 아미노산 사이드 체인의 소수성과는 관련이 없다라는 것을 의미한다. 또한, LAP의 가수분해활성은 4.5 M NaCl 농도에서 다른 LAP와 Aminopeptidase의 활성 보다 1-3배가 높다라는 것을 보여주었다. 이러한 결과들은 NaCl에 내성을 지닌 LAP을 치즈와 멸치 젓갈과 같은 식품 산업에 응용될 수 있다는 것을 보여준다.

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권12호
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.

Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1649-1656
    • /
    • 2017
  • In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular ${\beta}$-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular ${\beta}$-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

Effects of Commercial Nitrilase Hydrolysis on Acrylic Fabrics

  • Kim, Hye Rim;Seo, Hye Young
    • 한국의류산업학회지
    • /
    • 제18권6호
    • /
    • pp.889-896
    • /
    • 2016
  • This study aims to evaluate the hydrolytic activity of a commercial nitrilase and optimize nitrilase treatment conditions to apply eco-friendly finishing on acrylic fabrics. To assess the possibility of hydrolyzing nitrile bonds in acrylic fabric using a commercial nitrilase, the amounts of hydrolysis products, ammonia and carboxylate ions, were measured. The treatment conditions were optimized via the amount of ammonia. The formation of carboxylate ions on the fabric surface was detected by X-ray photoelectron spectroscopy and wettability measurements. After nitrilase treatment, ammonia was detected in the treatment liquid; thus, nitrilase hydrolyzed the nitrile bonds in acrylic woven fabric. The largest amount of ammonia was released into the treatment liquid under the following conditions: pH 8.0, $40^{\circ}C$, and a treatment time of 5 h. The formation of carboxylate ions on the acrylic woven fabric surface by nitrilase hydrolysis was proven by the increased O1s content measuring of XPS analysis. From comparison of the results of nitrilase and alkaline hydrolysis, the white index and strength of the alkali-hydrolyzed acrylic fabric decreased, whereas those of the nitrilase-hydrolyzed samples were maintained. The nitrilase hydrolysis improved the sensitivity of acrylic fabrics to basic dye similarly to alkaline hydrolysis without the drawbacks of yellowing and decreased strength caused by alkaline hydrolysis.

PREPARATION OF POLYSTYRENE BEADS CONTAINING SULFONAMIDE GROUPS AND THEIR APPLICATION TO POLYMERIC BIOCIDES

  • Kim, Cheol-Jin;Kim, Jee-Yeon;Byun, Jang-Woong;Kim, Jae-Eun;Lee, Yoon-Sik;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • 제11권6호
    • /
    • pp.325-332
    • /
    • 2006
  • A novel series of polystyrene (PS) beads containing various sulfonamide groups was prepared, and their chemical stabilities in an aqueous solution were tested in order to determine their ability to inactivate microbes. By reacting aminomethyl polystyrene (AM PS) beads or carboxy polystyrene beads with various benzenesulfonic acid derivatives, the sulfonamide groups were introduced on the PS beads. The characteristics of the product beads were analyzed by elementary analysis after the substitution of various sulfonamide groups. Energy Dispersive Spectroscopy (EDS), and FT-IR analysis were used to analyze the elemental functional group composition, respectively. The hydrolytic stabilities of the PS beads containing various sulfonamide groups along with the relationship between the swelling ratio and their hydrophilicity were investigated. The antibacterial activity of the beads was determined by their ability to inactivate E. coli. This study reports that PS beads containing sulfonamide groups had lasting antibacterial efficacy over a satisfactory period, whilst maintaining their chemical stabilities against hydrolysis. The 8 synthesized polymer beads exhibited antibacterial ability.

Identification of Enzymatic Catalysis of PncA using 1H-NMR

  • Yi, Jong-Jae;Kim, Won-Je;Rhee, Jin-Kyu;Lim, Jongsoo;Lee, Bong-Jin;Son, Woo Sung
    • 한국자기공명학회논문지
    • /
    • 제21권3호
    • /
    • pp.85-89
    • /
    • 2017
  • Pyrazinamidase (PncA) from Mycobacterium tuberculosis is the hydrolytic enzyme (hydrolase) that can hydrolyze substrate PZA to active form pyrazoic acid (POA). To investigate hydrolytic reaction of M. tuberculosis PncA, 1D NMR spectra were monitored at various molar ratios of PncA and PZA. The line-width of PZA was changed as PncA was added into PZA with different molar ratios. These results suggested that determination of PncA enzymatic activity could potentially serve as an indirect measure of PZA susceptibility.

Effect of Anaerobic Treatment on Carbohydrate-Hydrolytic Enzyme Activities and Free Amino Acid Contents in Barley Malt

  • Yun, Song-Joong;Choi, Kyeong-Gu;Kim, Jin-Key
    • 한국작물학회지
    • /
    • 제43권1호
    • /
    • pp.19-22
    • /
    • 1998
  • Effects of acute anoxia on carbohydrate hydrolytic enzyme activities and free amino acid contents in malt were examined. Malts were prepared with barley grains germinated for 7 days which contained the highest levels of amylolytic and(1-3,1-4)-$\beta$-glucanase activities. $\alpha$-Amylase and $\beta$-amylase activities in malts were not significantly affected by anoxia for 5 or 10 h.(1-3,1-4)-$\beta$-Glucanase activity, however, decreased about 7 to 10% by anoxia for 5 or 10 h. Alanine and $\gamma$-aminobutyric acid content changed drastically. Alanine contents in malts increased by 2.2- and 2-fold, and $\gamma$-aminobutyric acid contents by 1.4- and 1.9-fold under anoxia for 5 and 10 h, respectively.

  • PDF

Effects of Diet Composition on Digestive Activities of Enzyme in Lensky Sturgeon

  • Nevalyonny A. N.;Zaitsev V. F.;Korostelyov S. G.
    • 한국양식학회지
    • /
    • 제9권2호
    • /
    • pp.167-168
    • /
    • 1996
  • Experiments were conducted to determine the activities of protease and carbohydrase in growing lensky sturgeon fed with three different diets containing various concentrations of protein and carbohydrate. Neutral pretense activity from growing lensky sturgeon the protein diet (predo-minary, almost $100\%$ protein) was lower then those from fish fed the other diets during the experimental period. The results may indicate that the level of pretense activity is inversely related to the level of protein in the diets.

  • PDF

리기다소나무의 수용추출액이 무 종자의 발아과정에서 단백질과 동위효소 패턴에 미치는 영향 (Effects of Aqueous Extracts of Pinus rigida on Protein and Isozyme patterns during Radish Germination)

  • 김용옥;이호준
    • The Korean Journal of Ecology
    • /
    • 제21권6호
    • /
    • pp.771-777
    • /
    • 1998
  • Aqueous extracts of Pinus rigida changed the electrophoretic patterns of total proteins and of hydrolytic enzymes such as peroxidase, esterase and amylase during the germination of radish (Raphanus sativus var. hortensis for. acanthiformis). When the extract treatment was finished, at the late stage of radish germination, aqueous extracts of P. rigida had suppressed the expression of 24 KD and 60 KD proteins. the extract induced new isozyme bands, indicating concomitant activity of peroxidases, esterase activities were stimulated in the cathodic region. The activity of amylase was enhanced by the extract.

  • PDF