Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.5.761

Effect of NaCl on Hydrolytic Activity of Leucine Aminopeptidase from Bacillus sp. N2  

Chung, Dong-Min (Bioindustrial Process Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology)
Lee, Gang-Deog (Bioindustrial Process Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology)
Chun, Sung-Sick (Department of Food Nutrition, International University of Korea)
Chung, Young-Chul (Department of Food Nutrition, International University of Korea)
Chun, Hyo-Kon (Bioindustrial Process Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Life Science / v.21, no.5, 2011 , pp. 761-765 More about this Journal
Abstract
Salt stability of enzymes is a crucial practical factor in the food industry. Previously, leucine aminopeptidase (LAP) was purified from Bacillus sp. N2. Here, we present the salt effect of LAP using synthetic substrates. LAP had a hydrolytic activity for L-leucine-${\rho}$-nitroanilide in high concentrations of NaCl (up to 4 M), but not for other neutral salts (LiBr, LiCl, NaBr, KBr, and KCl). It hydrolyzed various synthetic di-peptide substrates with hydrophobic and hydrophilic amino acids at the C-terminal Xaa region, in the presence of 0-4 M NaCl. The result indicated that the hydrolytic action of LAP is not dependent on the hydrophobicity of the amino acid side chain at the scissile bond of the substrate. Remarkably, the hydrolytic activity of LAP was 1-3 folds higher than those of other LAPs and aminopeptidases in 4.5 M NaCl, suggesting that NaCl-tolerant LAP might be used in the food industry as cheese and anchovy sauce.
Keywords
Amino acid; Bacillus sp.; exopeptidase; leucine aminopeptidase; salt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Van Wart, H. E. and S. H. Lin. 1981. Metal binding stoichiometry and mechanisms of metal ion modulation of the activity of porcine kidney leucine aminopeptidase. Biochem. 20, 5682-5689.   DOI
2 Zevaco, C., V. Monnet, and J. C. Gripoh. 1990. Intracellular X-propyl-dipeptyl peptidase from Lactococcus lactis ssp. Lactis: purification and properties. J. Appl. Bacteriol. 68, 357-366.   DOI
3 Kim, H. O. and E. C. Y. Li-Chan. 2006. Quantitative structure-activity relationship study of bitter peptides. J. Agric. Food Chem. 54, 10102-10111.   DOI
4 Lee, G. D., S. S. Chun, Y. H. Kho, and H. K. Chun. 1998. Purification and properties of an extracellular leucine aminopeptidase from the Bacillus sp. N2. J. Appl. Microbiol. 85, 561-566.   DOI
5 Matsui, M., J. L. Flower, and L. L. Walling. 2010. Leucine aminopeptidases: diversity in structure and function. Biol. Chem. 387, 1535-1544.
6 Morihara, K. and H. Tsuzuki. 1970. Thermolysin: kinetic study with oligopeptides. Eur. J. Biochem. 15, 374-380.   DOI
7 Nowak, J. and H. Tsai. 1988. The yeast aminopeptidase Y. Can. J. Microbiol. 34, 118-124.   DOI
8 Prescott, J. M. and S. H. Wilkes. 1976. Aeromonas aminopeptidase. Methods Enzymol. 45, 530-543.   DOI
9 Spungin, A. and S. Blumberg. 1989. Streptomyces griseus aminopeptidase is a calcium activated zinc metalloprotein; Purification and properties of the enzyme. Eur. J. Biochem. 183, 471-47   DOI
10 Tan, P. S. T., T. A. J. M. Van Kessel, and F. L. M. Van De Veerdonk. 1993. Degradation and debittering of a tryptic digest from beta-casein by aminopeptidase N from Lactococcus lactis subsp cremoris Wg2. Appl. Environ. Microbiol. 59, 1430-1436.
11 Taylor, A. 1993. Aminopeptidase: towards a mechanism of action. Trends Biochem. Sci. 18, 167-172.
12 Taylor, A. 1993. Aminopeptidases: structure and function. FASEB J. 7, 290-298.
13 Geoghegan, K. F., A. Galdes, and G. Hanson. 1986. Hydrolysis of peptides by carboxypeptidase A: equilibrium trapping of the ES2 intermediate. Biochem. 25, 4669-4674.   DOI
14 Umetsu, H., H. Matsuoka, and E. Ichisima. 1983. Debittering mechanism of bitter peptides from milk casein by wheat carboxypeptidase. J. Agric. Food Chem. 31, 50-53.   DOI
15 Cahan, R., E. Hetzroni, M. Nisnevitch, and Y. Nitzan. 2007. Purification and identification of a novel leucine amino-peptidase from Bacillus thuringiensis israelensis. Curr. Microbiol. 55, 413-419.   DOI
16 Doi, E., D. Shibata, and T. Matoba. 1981. Modified colorimetric ninhydrin methods for peptidase assay. Anal. Biochem. 118, 173-184.   DOI
17 Izawa, N., K. Tokuyasu, and K. Hayashi. 1997. Debittering of protein hydrolysates using Aeromonas caviae aminopeptidase. J. Agric. Food Chem. 45, 543-545.   DOI   ScienceOn