• 제목/요약/키워드: hydrolytic

Search Result 403, Processing Time 0.032 seconds

Effect of Xylan on Production of Xylanolytic Activity from Penicillium verruculosum (Penicillium verruculosum의 Xylan분해활성도의 생성에 대한 Xylan의 영향)

  • 조남철;정두례;유영균
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.423-427
    • /
    • 1992
  • During the cultivation of Penicillium verruculosum in the medium containing xylan as a sole carbon source for 26 days, xylanolytic activity and some changes were investigated. Protein content and xylanolytic activity, p-Nitrophenyl-$\beta$-D-xylopyranoside (PNPX), p-Nitrophenyl-$\beta$ -D-glucopyranoside (PNPG) hydrolytic activities were increased until 8 days but reducing sugar content was not correlated to protein content. When crude proteins from the culture broth were separated on SDS-PAGE, distribution of proteins was different from the culture broth of cellobiose octaacetate (COA) medium. The culture broth of xylan medium had high hydrolytic activity on xylan but not on cellulose. Furthermore, xylanolytic products were showed xylose, xylobiose and oligosaccharides on thin layer chromatography, and xylobiose was major product. Those result suggested that xylanolytic activity of culture broth was endo-type hydrolysis. Optimum temperatures of xylanolytic activity and PNPX hydrolytic activity of culture broth were 50~6$0^{\circ}C$ and 60~7$0^{\circ}C$, respectively and optimum pHs were 3.0~4.0 and 4.0~5.0, respectively.

  • PDF

Production and Characterization of Extracellular Phospholipase D from Streptomyces sp. YU100

  • Lim, Si-Kyu;Choi, Jae-Woong;Chung, Min-Ho;Lee, Eun-Tae;Khang, Yong-Ho;Kim, Sang-Dal;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.189-195
    • /
    • 2002
  • Using Streptomyces sp. YU100 isolated from Korean soil, the fermentative production of phospholipase D was attempted along with its purification and characterization studies. When different carbon and nitrogen sources were supplemented in the culture medium, glucose and yeast extract were found to be the best. By varying the concentration of nutrients and calcium carbonate, the optimal culture medium was determined as 2.0% glucose, 1.5% yeast extract, 0.5% tryptone 0.3% calcium carbonate. During cultivation, the strain secreted most of the phospholipase D in the early stage of growth within 24 h. The phospholipase D produced in the culture broth exhibited hydrolytic activity as well as transphosphatidylation activity on lecithin (phosphatidylcholine). In particular, the culture broth showed 8.7 units/ml of hydrolytic activity when cultivated at $28^{\circ}C$ for 1.5 days. The phospholipase D was purified using 80% ammonium sulfate precipitation and DEAE-Sepharose CL-6B column chromatography, which produced a major band of 57 kDa on a 10% SDS-polyacrylamide gel with purity higher than 80%. The enzyme showed an optimal pH of 7 in hydrolytic reaction, and at pH 4 in a transphosphatidylation reaction. The enzyme activity increased until the reaction temperature was elevated to $60^{\circ}C$. The enzyme was relatively stable at high temperatures and neutral pH, but significantly unstable in the alkaline range. Among the detergents tested as emulsifiers of phospholipids, the highest enzyme activity was observed when 1.5% Triton X-100 was employed. However, no inhibitory effect by metal ions was detected. Under optimized reaction conditions, the purified enzyme not only completely decomposed PC to phosphatidic acid within 1 h, but also exhibited higher than 80% conversion rate of PC to PS by transphosphatidylation within 4 h.

Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1649-1656
    • /
    • 2017
  • In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular ${\beta}$-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular ${\beta}$-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

Preparation and Properties of Biodegradable Superabsorbent Gels Based on Poly(aspartic acid)s with Amino Acid Pendants (아미노산 곁사슬 치환 폴리아스팔트산계 생분해성 고흡수성 젤의 제조와 물성)

  • Son, Chang-Mo;Jeon, Young-Sil;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.558-564
    • /
    • 2011
  • The biocompatibility and biodegradability of poly(amino acid) make them ideal candidates for many bio-related applications. Poly(aspartic acid), PASP, is one of synthetic water-soluble polymers with proteinlike structure, and has been extensively explored for the potential industrial and biomedical applications due to its biodegradable, biocompatible and pH-responsive properties. In this work, amino acid-conjugated PASPs were prepared by aminolysis reaction onto polysuccinimide (PSI) using ${\gamma}$-aminobutylic acid(GABA) and ${\beta}$-alanine methyl ester and a subsequent hydrolysis process. Their chemical gels were prepared by crosslinking reaction with ethylene glycol diglycidyl ether (EGDE). The hydrogels were investigated for their basic swelling behavior, hydrolytic degradation and morphology. The crosslinked gels showed a responsive swelling behavior, which was dependent on pH and salt concentration in aqueous solution, and relatively fast hydrolytic degradation.

Effect of NaCl on Hydrolytic Activity of Leucine Aminopeptidase from Bacillus sp. N2 (Bacillus sp. N2 유래 leucine aminopeptidase의 가수분해활성에 대한 NaCl의 영향)

  • Chung, Dong-Min;Lee, Gang-Deog;Chun, Sung-Sick;Chung, Young-Chul;Chun, Hyo-Kon
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.761-765
    • /
    • 2011
  • Salt stability of enzymes is a crucial practical factor in the food industry. Previously, leucine aminopeptidase (LAP) was purified from Bacillus sp. N2. Here, we present the salt effect of LAP using synthetic substrates. LAP had a hydrolytic activity for L-leucine-${\rho}$-nitroanilide in high concentrations of NaCl (up to 4 M), but not for other neutral salts (LiBr, LiCl, NaBr, KBr, and KCl). It hydrolyzed various synthetic di-peptide substrates with hydrophobic and hydrophilic amino acids at the C-terminal Xaa region, in the presence of 0-4 M NaCl. The result indicated that the hydrolytic action of LAP is not dependent on the hydrophobicity of the amino acid side chain at the scissile bond of the substrate. Remarkably, the hydrolytic activity of LAP was 1-3 folds higher than those of other LAPs and aminopeptidases in 4.5 M NaCl, suggesting that NaCl-tolerant LAP might be used in the food industry as cheese and anchovy sauce.

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites (생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구)

  • Jang, Sang Hee
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

Comparison of Fatty Acid Composition by Fat Extraction Method: Different Parts of Chicken by Cooking Method (조지방 추출 방법에 따른 지방산 조성 비교 및 조리방법을 달리한 닭고기 부위별 지방산 함량 분석)

  • Jeong, Sang Hwa;Shin, Jung Ah;Kim, In Hwan;Kim, Byung Hee;Lee, Jun Soo;Lee, Ki Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1257-1263
    • /
    • 2014
  • Different fat extraction methods such as the Rose-Gottlieb, Folch, and hydrolytic methods were compared in terms of their fatty acid contents of milk powder. Contents of total saturated fatty acids by the Rose-Gottlieb, Folch, and hydrolytic methods were 8.578, 8.302, and 8.711 g/100 g milk powder while contents of total unsaturated fatty acids by the Rose-Gottlieb, Folch, and hydrolytic methods were 11.513, 11.143, and 11.669 g/100 g milk powder, respectively. These results suggest that the hydrolytic method has a similar fatty acid composition as the well-known Rose-Gottlieb method. In uncooked chicken, total fatty acid contents of breast, gamb, and wing were 6.302, 8.313, and 11.346 g/100 g, respectively. Among different cooking methods, frying increased content of total trans fatty acids up to 0.034 (breast), 0.112 (gamb), and 0.123 g/100 g (wing).

Metabolic fate of chloramphenicol-ester (Ester형 Chloramphenicol의 생체내 대사에 대하여)

  • 한병훈
    • YAKHAK HOEJI
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 1964
  • Present experiment in vivo shows that some conversions of active groups in chloramphenicol residue of ester, that is hydrolytic cleavage of dichloracetamide and glucuronide formation, seem to take place prior to hydrolysis. This result suggest that the enzymatic hydrolysis rate in vitro, is not available as an index for the evaluation of the chlorampherical ester potency.

  • PDF