• Title/Summary/Keyword: hydrolysis time

Search Result 665, Processing Time 0.036 seconds

Temperature-Dependent Hydrolysis Reactions of U(VI) Studied by TRLFS

  • Lee, J.Y.;Yun, J.I.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • Temperature-dependent hydrolysis behaviors of aqueous U(VI) species were investigated with time-resolved laser fluorescence spectroscopy (TRLFS) in the temperature range from 15 to $75^{\circ}C$. The formation of four different U(VI) hydrolysis species was measured at pHs from 1 to 7. The predominant presence of $UO{_2}^{2+}$, $(UO_2)_2(OH){_2}^{2+}$, $(UO_2)_3(OH){_5}^+$, and $(UO_2)_3(OH){_7}^-$ species were identified based on the spectroscopic properties such as fluorescence wavelengths and fluorescence lifetimes. With an increasing temperature, a remarkable decrement in the fluorescence lifetime for all U(VI) hydrolysis species was observed, representing the dynamic quenching behavior. Furthermore, the increase in the fluorescence intensity of the further hydrolyzed U(VI) species was clearly observed at an elevated temperature, showing stronger hydrolysis reactions with increasing temperatures. The formation constants of the U(VI) hydrolysis species were calculated to be $log\;K{^0}_{2,2}=-4.0{\pm}0.6$ for $(UO_2)_2(OH){_2}^{2+}$, $log\;K{^0}_{3,5}=-15.0{\pm}0.3$ for $(UO_2)_3(OH){_5}^+$, and $log\;K{^0}_{3,7}=-27.7{\pm}0.7$ for $(UO_2)_3(OH){_7}^-$ at $25^{\circ}C$ and I = 0 M. The specific ion interaction theory (SIT) was applied for the extrapolation of the formation constants to infinitely diluted solution. The results of temperature-dependent hydrolysis behavior in terms of the U(VI) fluorescence were compared and validated with those obtained using computational methods (DQUANT and constant enthalpy equation). Both results matched well with each other. The reaction enthalpies and entropies that are vital for the computational methods were determined by a combination of the van't Hoff equation and the Gibbs free energy equation. The temperature-dependent hydrolysis reaction of the U(VI) species indicates the transition of a major U(VI) species by means of geothermal gradient and decay heat from the radioactive isotopes, representing the necessity of deeper consideration in the safety assessment of geologic repository.

Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate (이성분계 실란 커플링제의 가수분해속도 조절에 의한 2-FCCL의 접착특성 변화 연구)

  • Park, U-Joo;Park, Jin-Young;Kim, Jin-Young;Kim, Yong-Seok;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.302-307
    • /
    • 2011
  • The parameters of silanol formation reaction of organosilane including solvent type, solution concentration, pH and hydrolysis time influence the adhesion property of 2 layer flexible copper clad laminate (FCCL). Especially, the hydrolysis reaction time of silane coupling agent affects the formation of the silanol groups and their self-condensation to generate oilgomeric structure to enhance the surface treatment as an adhesive promoter. In our study, we prepared the binary silane coupling agents to control hydrolysis reaction rate and surface energy after treatment of silane coupling agents for increasing the adhesive property between a copper layer and a polyimide layer. The surface morphology of rolled copper foil, as a function of the contents of the coated binary silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by hydrolysis rate and surface energy.

Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae

  • Cho, YuKyeong;Kim, Min-Ji;Kim, Sung-Koo
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.366-371
    • /
    • 2013
  • Ethanol productions were performed by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using seaweed, Enteromorpha intestinalis (sea lettuce). Pretreatment conditions were optimized by the performing thermal acid hydrolysis and enzymatic hydrolysis for the increase of ethanol yield. The pretreatment by thermal acid hydrolysis was carried out with different sulfuric acid concentrations in the range of 25 mM to 75 mM $H_2SO_4$, pretreatment time from 30 to 90 minutes and solid contents of seaweed powder in the range of 10~16% (w/v). Optimal pretreatment conditions were determined as 75 mM $H_2SO_4$ and 13% (w/v) slurry at $121^{\circ}C$ for 60 min. For the further saccharification, enzymatic hydrolysis was performed by the addition of commercial enzymes, Celluclast 1.5 L and Viscozyme L, after the neutralization. A maximum reducing sugar concentration of 40.4 g/L was obtained with 73% of theoretical yield from total carbohydrate. The ethanol concentration of 8.6 g/L of SHF process and 7.6 g/L of SSF process were obtained by the yeast, Saccharomyces cerevisiae KCTC 1126, with the inoculation cell density of 0.2 g dcw/L.

Enzymatic Hydrolysis of Pretreated Chitin by Aspergillus carneus Chitinase

  • Mohamed, Abdel-Naby;Kwon, Dae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.197-203
    • /
    • 1992
  • Studies of the pretreatment of chitin and its subsequent hydrolysis by Aspergillus carneus chitinase are reported. Ball milling was found to be the most effective way among the pretreatment methods tested. Data are presented describing the effect of enzyme and substrate concentrations on the rate and extent of the hydrolysis process. It was found that the successive addition of enzyme improved the saccharification yield. Significant product inhibition of the chitinase was observed when N-acetylglucosamine concentration was 3.6% or higher. Adsorption of enzymes to the substrate occurred during a 24 hr hydrolysis period. An initial rapid and extensive adsorption occurred, followed by gradual desorption which increased during the time of reaction. Intermediate removal of the hydrolyzate and continuation of the hydrolysis by adsorbed enzyme on the residual chitin was also investigated. A total of 75.4 g/l reducing sugars, corresponding to 69.2% saccharificaton yield (as N-acetylglucosamine) was obtained. In addition an increase in the amount of recoverable enzymes was observed under these conditions. Evidence presented here suggests that the technique, whereby the free enzymes in the recovered hydrolyzate are re-adsorbed onto the new substrate, may provide a means of recirculating the dissolved enzymes.

  • PDF

Optimization of Shark (Squatina oculata) Cartilage Hydrolysis for the Preparation of Chondroitin Sulfate

  • Jo, Jin-Ho;Do, Jeong-Ryong;Kim, Young-Moung;Kim, Dong-Soo;Lee, Taek-Kyun;Kim, Seon-Bong;Cho, Seung-Mock;Kang, Suk-Nam;Park, Douck-Choun
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.651-655
    • /
    • 2005
  • Enzymatic hydrolysis of shark (Squatina oculata) cartilage (SC) was optimized by response surface methodology (RSM) for chondroitin sulfate (CS) preparation. Among 11 commercial proteases, Maxazyme NNP showed highest productivity (CS yield per enzyme cost) of CS. Optimal hydrolysis conditions determined by RSM were 1.63% and 2.87 hr for enzyme concentration and hydrolysis time ($r^2\;=\;0.9527$, p<0.0l), respectively and highest yield of hydrolysate under the conditions was 42.3%. The yield ($43.1{\pm}2.1%$) and CS content ($24.8{\pm}0.1%$) of hydrolysate at optimal condition verified statistical optimization of SC enzymatic hydrolysis was valid.

Optimization of acid hydrolysis conditions of Hovenia dulcis extract for increasing bioactive compound

  • Kang, Sung-Hee;Kim, Sung-Mun;Kim, Jin-Hyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.360-363
    • /
    • 2005
  • This study was a method that used a hydrolysis for increasing the efficacy of alcohol decrease from Hovenia dulcis extract. The best pH was 2.0 to obtain a maximum activity at fixed reaction temperature and time. At pH 2.0, reaction temperature $80^{\circ}C$ and reaction time 4 hr gave the highest activity which was 124.2% of control. This is very simple and efficient method to increase the efficacy of alcohol decrease from Hovenia dulcis extract. The mechanism that increases the efficiency of alcohol decrease be examined through hydrolysis.

  • PDF

Mechanism of Alcohol Decrease by Acid Hydrolsis of Hovenia dulcis Extract

  • Kang, Sung-Hee;Kim, Sung-Mun;Kim, Jin-Hyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.530-534
    • /
    • 2005
  • This work was a method that used an acid hydrolysis for increasing the efficacy of decreasing alcohol concentration from Hovenia dulcis extract. The best pH was 2.0 to obtain a maximum alcohol dehydrogenase activity at fixed reaction temperature and time. At pH 2.0, reaction temperature $80^{\circ}C$ and reaction time 4hr gave the highest activity which was 124% of control. The bioactive compound, (+)-dihydromyricetin, content increased to 30% after acid hydrolysis. This is very simple and efficient method to increase the efficacy of decreasing alcohol concentration from Hovenia dulcis extract. The mechanism that increase the efficiency of alcohol decrease be examined through hydrolysis.

  • PDF

Processing of Functional Enzyme-hydrolyzed Sauce from Anchovy Sauce and Soy Sauce Processing By-products 1. Optimization of Hydrolysis Conditions by Response Surface Methodology (멸치액젓 및 간장 가공부산물을 이용한 기능성 효소분해간장의 제조 1. 반응표면분석법에 의한 가수분해물 제조조건의 최적화)

  • Kim, Hun;Lee, Jung-Suck;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.653-657
    • /
    • 2002
  • The hydrolysis conditions (enzym $e_strate ratio, time and temperature) of the mixture of anchovy sauce residue (ASR) and soy sauce residue (SSR) after fermentation by Flavourzyme 500M $G^{TM}$ were optimized using response surface methodology (RSM) for pretreatment of processing functional enzyme-hydrolyzed sauce. A model equation obtained from RSM was hydrolysis ratio (%) = 28.157+1.929enzym $e_strate ratio+1.818time+2.038temperature-1.093temperatur $e^2$, whose stationary point showed saddle point. From the ridge analysis of the saddle point, the conditions producing the highest hydrolysis ratio was determined as follows: 0.49% enzym $e_strate ratio; 3.55hr hydrolysis time; 62.5$^{\circ}C$ hydrolysis temperature. Adding of SSR to the mixture of water and ASR improved sensory qualities of mixture, so it seemed that SSR has masking effects on off-flavor and taste of ASR.R.of ASR.R.

Characteristics of Anaerobic Methane Production by Ultrasonic Treatment of Excess Sludge (잉여슬러지의 초음파 처리에 의한 혐기성 소화에서의 메탄생성 특성 연구)

  • Lee, Jonghak;Jeong, Tae-Young;Roh, Hyun-Seog;Kim, Dongjin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.810-815
    • /
    • 2010
  • Ultrasonic sludge pre-treatment has been studied to enhance the performance of anaerobic digestion by increasing sludge hydrolysis which is regarded as the rate-limiting-step of anaerobic digestion. In this study, the effect of ultrasonic pre-treatment on sludge hydrolysis (solubilization) and methane production was investigated. Sludge solubilization efficiency increased with ultrasonic energy input. However, it is uneconomical to apply more than 720 kJ/L as the solubilization efficiency per energy input declines afterwards. Volatile fatty acids concentration increased after the ultrasonic sludge hydrolysis. Anaerobic batch digestion showed that methane volume reached 64.7 and 84.5 mL after 18 days of incubation with the control sludge and ultrasonically hydrolyzed sludge, respectively. Methane production potential, maximum methane production rate, and the lag time of modified Gompertz equation were changed from 70 mL, 6.4 mL/day, and 1.2 days to 89 mL, 9.6 mL/day, and 0.5 day, respectively, after the ultrasonic sludge treatment. The results proved that ultrasonic pre-treatment contributed significantly not only for the methane production but also for the reduction of anaerobic digestion time which is critical for the performance of anaerobic sludge digestion.

A Study on Improvement of Oriental Drugs Preparation by Enzyme (효소(酵素)를 이용한 한약(韓藥) 전탕법(煎蕩法)의 개선(改善)에 관한 연구(硏究))

  • Ko, Byoung-Seob;Park, Kap-Joo;Hong, Won-Sik;Choi, Mi-Kyeong;Kim, Mung-Hee
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.506-514
    • /
    • 1997
  • This study was conducted to improve preparations of oriental drugs by enzyme. Total sugar, reduced sugar, hydrolysis rate, and amylose content were compared in Korean yam starch and some oriental drugs treated different enzyme levels and treatment times. The results were as follows. Reduced sugar and hydrolysis rate by enzyme of yam starch were significantly increased according to increments of enzyme level and treatment time. Amylose content in yam starch was significantly decreased to increment of enzyme level and treatment time. Total sugar content in some oriental drugs of Sangmaeksan, Yukmigiwhang, Yukshinsan, Manbungsarungsan, and Sanyaksogalum were 46.08, 44.87, 11.15, 10.67, and $6.l6mg/m{\ell}$, respectively. There was no significant difference in hydrolysis rate by enzyme of Sangmaeksan, Yukmigiwhang, Manbungsarungsan. However, hydrolysis rates of Yukshinsan and Sanyaksogalum were significantly highest in 0.2% enzyme and 0.5% enzyme groups, respectively.

  • PDF