Browse > Article
http://dx.doi.org/10.7841/ksbbj.2013.28.6.366

Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae  

Cho, YuKyeong (Department of Biotechnology, Pukyong National University)
Kim, Min-Ji (Department of Biotechnology, Pukyong National University)
Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
Publication Information
KSBB Journal / v.28, no.6, 2013 , pp. 366-371 More about this Journal
Abstract
Ethanol productions were performed by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using seaweed, Enteromorpha intestinalis (sea lettuce). Pretreatment conditions were optimized by the performing thermal acid hydrolysis and enzymatic hydrolysis for the increase of ethanol yield. The pretreatment by thermal acid hydrolysis was carried out with different sulfuric acid concentrations in the range of 25 mM to 75 mM $H_2SO_4$, pretreatment time from 30 to 90 minutes and solid contents of seaweed powder in the range of 10~16% (w/v). Optimal pretreatment conditions were determined as 75 mM $H_2SO_4$ and 13% (w/v) slurry at $121^{\circ}C$ for 60 min. For the further saccharification, enzymatic hydrolysis was performed by the addition of commercial enzymes, Celluclast 1.5 L and Viscozyme L, after the neutralization. A maximum reducing sugar concentration of 40.4 g/L was obtained with 73% of theoretical yield from total carbohydrate. The ethanol concentration of 8.6 g/L of SHF process and 7.6 g/L of SSF process were obtained by the yeast, Saccharomyces cerevisiae KCTC 1126, with the inoculation cell density of 0.2 g dcw/L.
Keywords
Bioethanol; Fermentation; Enteromorpha intestinalis; Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rojan, P. J., G. S. Anisha, K. M. Nampoothiri, and A. Pandey (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193.   DOI   ScienceOn
2 Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851-4861.   DOI   ScienceOn
3 Balat, M. (2010) Production of bioethanol from lignocellulosic materials via the biochemical pathway; A review. Energ. Convers. Manage. 52: 858-875.
4 Feng, D., H. Liu, F. Li, Peng. J, and Song. Q (2011) Optimization of dilute acid hydrolysis of Enteromorpha. Chin J. Oceanol. Limnol. 6: 1243-1248.
5 Hsu, C. L., K. S. Chang, M. Z. Lai, T. C. Chang, Y. H. Chang, and H. D. Jang (2011) Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing Streptomyces for bioethanol production. Biomass Bioenerg. 35: 1878-1884.   DOI   ScienceOn
6 Marques, S., L. Alves, J. C. Roseiro, and F. M. Girio (2008) Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass Bioenerg. 32: 400-406.   DOI   ScienceOn
7 Tomas-Pejo, E., J. M. Oliva, A. Gonzalez, I. Ballesteros, and M. Ballesteros (2009) Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel. 88: 2142-2147.   DOI   ScienceOn
8 Kahar, P., K. Taku, and S. Tanaka (2010) Enzymatic digestion of corncobs pretreated with low strength of sulfuric acid for bioethanol production. J. Biosci. Bioeng. 110: 453-458.   DOI   ScienceOn
9 Rosgaard, L., P. Andric, D. J. Kim, S. Pedersen, and A. S. Meyer (2007) Effect of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl. Biochem. Biotechnol. 143: 27-40.   DOI   ScienceOn
10 Lu, X., Y. Zhang, and I. Angelidaki (2009) Optimization of $H_{2}SO_{4}$-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: Focusing on pretreatment at high solids content. Bioresour. Technol. 100: 3048-3053.   DOI   ScienceOn
11 Dunaway, K. W., R. K. Dasari, N. G. Bannett, and R. E. Berson (2010) Characterization of changes in viscosity and insoluble solids content during enzymatic saccharification of pretreated corn stover slurries. Bioresour. Technol. 101: 3575-3582.   DOI   ScienceOn
12 Kim, J. D., Y. H. Yoon, T. S. Shin, M. Y. Kim, H. S. Byun, S. J. Oh, and H. J. Seo (2011) Bioethanol production from seaweed Ulva pertusa for environmental application. Korean society for Biotechnol. Bioeng. Jour. 26: 317-322.   과학기술학회마을   DOI   ScienceOn
13 Ahn, D. J., S. K. Kim, and H. S. Yun (2012) Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess Biosyst. Eng. 35: 35-41.   DOI
14 Jang, J. S., Y. K. Cho, G. T. Jeong, and S. K. Kim (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35: 11-18.   DOI
15 Nichols, N. N., L.N. Sharma, R. A. Mowery, C. K. Chambliss, G. P. V. Walsum, B. S. Dien, and L. B. Iten (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb. Technol. 42: 624-630.   DOI   ScienceOn
16 Karimi, K., G. Emtiazim, and M. J. Taherzadeh (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicys, Rhizopus oryzae, and Saccharomyces cerevisiae, Enzyme Microb. Technol. 40: 138-144.   DOI   ScienceOn
17 Kuhad, R. C., R. Gupta, Y. P. Khasa, and A. Singh (2010) Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresour. Technol. 101: 8348-8354.   DOI   ScienceOn