• Title/Summary/Keyword: hydrolysate

Search Result 722, Processing Time 0.037 seconds

Effect of Sodium Caseinate Hydrolysates on Angiotensin-I Converting Enzyme Inhibition Activity (Sodium Caseinate 가수분해물의 Angiotensin-I Converting Enzyme 저해효과에 관한 연구)

  • Lee, Keon-Bong;Shin, Yong-Kook;Baick, Seung-Chun
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.652-658
    • /
    • 2012
  • This study was carried out to identify the ACE (Angiotensin converting enzyme) inhibitory activity of casein hydrolysates for development of anti-hypertensive hydrolysates. Sodium caseinate was treated with six kinds of commercial proteases such as Flavourzyme, Protamex, Neutrase 1.5, Alcalase, Protease M, and Protease S for 8 h individually, and was then treated with the enzyme combination for 4 h at $45^{\circ}C$. The hydrolysate which had the highest ACE inhibitory effect was then hydrolysed successively with three digestive enzymes: pepsin, trypsin, and ${\alpha}$-chymotrypsin, at $37^{\circ}C$ for 4 h under conditions mimicking those of the gastrointestinal tract. UF (ultra filtration) treatment was applied to one of the secondary hydrolysates to determine ACE inhibitory activity. When sodium caseinate was hydrolysed by commercial proteases, the degree of hydrolysis (DH) showed 2.54 to 4.25% and after secondary hydrolysis, DH showed 4.30 to 5.22%. ACE inhibitory activity and $IC_{50}$ values decreased, and inhibition rates increased during hydrolysis. Protamex treatment showed the lowest $IC_{50}$ value ($516{\mu}g/mL$) and Flavourzyme hydrolysate showed the highest $IC_{50}$value ($866{\mu}g/mL$). As the first hydrolysate was treated with Flavourzyme, the ACE inhibitory activity increased. Neutrase hydrolysate had the highest activity with an $IC_{50}$ value ($282{\mu}g/mL$). When Neutrase plus Flavourzyme treatment was hydrolyzed by digestive enzymes, the $IC_{50}$ value ($597{\mu}g/mL$) was decreased statistically (p<0.05). As Neutrase plus Flavourzyme hydrolysate is treated by UF with MW cut-off 10,000, permeate showed $273{\mu}g/mL$ of $IC_{50}$ value, showed no difference, but retentate which has over MW 10,000 showed statistically different $IC_{50}$ value, $635{\mu}g/mL$ (p<0.05).

Protective Effects of Enzymatic Oyster Hydrolysate on Acetaminophen-induced HepG-2 Cell Damage (아세트아미노펜 유도 HepG-2 세포주 손상에 대한 굴 효소 가수분해물의 보호 효과)

  • Park, Si-Hyang;Moon, Sung-Sil;Xie, Cheng-Liang;Choung, Se-Young;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1166-1173
    • /
    • 2014
  • This study investigated the detoxification effects of enzymatic hydrolysate from oyster on acetaminophen-induced toxicity using HepG-2 cells. Oyster hydrolysate was made with 1% Protamex and 1% Neutrase after treatment with transglutaminase (TGPN) or without (PN). Two types of oyster hydrolysate were added to human-derived HepG-2 hepatocytes damaged by acetaminophen, after which the survival rate of HepG-2 cell was measured. In addition, glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities in the culture media were evaluated. The survival rates of HepG-2 cells were $136.2{\pm}1.4%$ at $100{\mu}g/mL$ of TGPN and $179.6{\pm}3.8%$ at $200{\mu}g/mL$ of TGPN. These cell survival rates were higher compared to that of the negative control group ($60.7{\pm}3.2%$) treated only with acetaminophen. GOT activity was $38.3{\pm}0.2$ Karmen/mL in the negative control group, whereas it was $19.9{\pm}0.5$ for TGPN ($200{\mu}g/mL$) and $22.0{\pm}2.4$ Karmen/mL for PN ($200{\mu}g/mL$). GOT and GTP activities were shown to be dependent on TGPN concentration, and significant reduction in activities could be conformed. The detoxification efficacy of TGPN was higher compared to that of PN. These results suggest that oyster hydrolysate has potential as a healthy food or pro-drug for liver protection.

Biological Characteristics of Protein Hydrolysates Derived from Yoensan Ogae Meat by Various Commercial Proteases (프로테아제 종류에 따른 이용한 연산 오계육 단백질 가수분해물의 아미노산 및 생리활성 특성)

  • Ha, Yoo Jin;Kim, Joo Shin;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1018-1027
    • /
    • 2019
  • Natural-derived protein-derived low molecular weight peptides have been known to have physiological activities such as antioxidant, hypertension relief, immunomodulation, pain relief and antimicrobial activity. In this study, the low-molecular peptides were produced using commercial proteases (alcalase, bromelain, flavourzyme, neutrase, papain, protamex), and the antioxidant activity (DPPH scavenging activity, superoxide radical scavenging activity, hydroxy radical scavenging activity, and metals chelation capacity), constituent amino acid and molecular weight of the peptide were analyzed. Enzyme reaction was performed by adding 50 g of chopped Ogae meat slurry and 2%(w/v) protein enzyme into the enzyme reactor for 2 h at a pH of 6 and a temperature of $60^{\circ}C$. The degree of hydrolysis(%) after the reaction ranged from $36.65{\pm}4.10%$ to $70.75{\pm}5.29%$. The highest degree of hydrolysis of protamex was 46.3%, and the highest value of papain hydrolysate was $70.75{\pm}5.29%$. On the other hand, alcalase hydrolysate showed the lowest value of $36.65{\pm}4.10%$. Bromelain-treated low molecular weight peptides showed the highest DPPH radical scavenging activity and the lowest scavenging activity of alcalase-treated peptides. Superoxide radical scavenging activity showed that bromelain treated low molecular peptide showed the highest radical scavenging activity of 50% or more. Hydroxyl radical scavenging activity ranged from about 16.73 to 69.16%, the highest among bromelain-treated low molecular peptides. $Fe^{2+}$ chelation abilities showed a distribution between about 17.85 to 47.84%. The chelation capacity of the hydrolysates was not significantly different without any difference to the enzymes used. The results of amino acid analysis showed differences between hydrolysates of alcalase, bromelain, flavourzyme, neutrase, papain, and protamex enzymes. The most amino acid was glutamic acid. The molecular weight distribution of the enzyme hydrolyzates was in the range of 300-2,000 Da, although the molecular weight distribution differed according to the treated enzymes.

Removal of 5-hydroxymethylfurfural and Furfural in Sugar Hydrolysate by Wood Charcoal Treatment (목탄 처리에 의한 당화액 내 5-hydroxymethylfurfural 및 푸르푸랄 제거)

  • Jeong, Hanseob;Kim, Yong Sik;Lee, Jaejung;Chea, Kwang-Seok;Ahn, Byoung Jun;Lee, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.705-715
    • /
    • 2016
  • The main aim of this study was to investigate the potential of wood charcoal on removing furan compounds (5-hydroxymethylfurfural (5-HMF), furfural) known as fermentation inhibitors in sugar hydrolysates obtained from supercritical water treatment of lignocellulosic biomass. For this aim, model hydrolysate was prepared, and removal rates of sugars or furan compounds depending on wood charcoal concentration and treatment time were calculated and analyzed in comparison with the case of activated carbon. 0.5, 1, 2, 4, 8, or 12% (w/v) of wood charcoal or activated carbon was loaded into the model hydrolysate, containing glucose, xylose, 5-HMF, and furfural, and treatment was conducted for 1, 3, 6, 12, or 24 h. After treatment, removal rates of 5-HMF and furfural gradually increased as wood charcoal concentration or treatment time increased, and over 95% of 5-HMF and furfural were removed at 8% of wood charcoal concentration and 3 h of treatment time, while the loss of sugars (< 2%) was hardly observed. On the other hand, in the case of activated carbon treatment, removal rates of 5-HMF and furfural were over 95% at mild condition (activated carbon concentration: 8%, treatment time: 1 h), but over 10% of glucose and xylose were removed. Therefore, considering sugar production and further process applied sugar, the wood charcoal treatment of sugar hydrolysate was more effective for removing furan compounds and maintaining the sugar yield.

Macrophage Activation of Chitosan Hydrolysates with Different Molecular Weights in vitro (분자량에 따른 Chitosan의 in vitro 대식세포 활성화)

  • Chang, Hyun-Joo;Chun, Hyang-Sook;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1363-1370
    • /
    • 1999
  • This study was performed to investigate the average molecular weight range of chitosan hydrolysates showing maximum effect in macrophage activation. Nitrite production by continuous macrophage cell line J774A.1 was the highest at $10\;{\mu}g/ml$ concentration of intact chitosan. Hydrogen peroxide production by J774A.1 showed the high value of $894\;{\mu}M/mg$ macrophage protein at $1,000\;{\mu}g/ml$ concentration of chitosan hydrolysate fraction 5 and $1,044\;{\mu}M/mg$ macrophage protein at $100\;{\mu}g/ml$ concentration of the fraction 6. Chitsan hydrolysate fraction 4, fraction 6 and intact chitosan enhanced $IL-1{\alpha}$ production, while the others did not. The production of tumor necrosis factor showed the high value at $1,000\;{\mu}g/ml$ concentration of chitosan hydrolysate fraction 4, $100\;{\mu}g/ml$ concentration of the fraction 5 and fraction 6, and $10\;{\mu}g/ml$ concentration of intact chitosan. In conclusion, fractions 4, 5 and 6 of the chitosan hydrolysatets with average molecular weight of $24,000{\sim}64,000$ calculated by HPLC analysis are the most effective in macrophage activation tested in this study.

  • PDF

Effects of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility in growing pigs compared to those of defatted mealworm larvae meal, fermented poultry by-product, and hydrolyzed fish soluble

  • Cho, Kyung Hoon;Kang, Sun Woo;Yoo, Jong Sang;Song, Dae Kil;Chung, Yi Hyung;Kwon, Gyoo Taik;Kim, Yoo Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.490-500
    • /
    • 2020
  • Objective: To investigate effect of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility compared to those of dried mealworm larvae meal, fermented poultry by-product, and hydrolyzed fish soluble in growing pigs. Methods: A total of 12 crossbred ([Landrace×Yorkshire]×Duroc) growing pigs with average body weight of 28.70±0.32 kg were surgically equipped with simple T-cannulas. A total of 12 pigs were assigned to individual metabolic crates and allotted to one of four treatments with 3 replicates in a fully randomized design. Results: Apparent ileal digestibility (AID) of dry matter (DM) was the highest in pigs fed HML diet. AIDs of crude protein (CP) were higher in pigs fed HML and DMLM diets than those in pigs fed the other two diets. AID of total amino acid was higher (p = 0.06) in pigs fed HML diet. AIDs of lysine (Lys), methionine (Met), and threonine (Thr) were similar in pigs fed DMLM and HML diets, but were higher (p = 0.05, p<0.05, and p = 0.05, respectively) than those in pigs fed FPBM or HFS diet. Pigs fed HML diet had higher standardized ileal digestibilities (SIDs) of DM and CP (p<0.05 and p<0.05, respectively) compared to pigs fed the other FPBM and HFS diets. SIDs of total amino acid were not different (p = 0.06) between treatments. For SIDs of Lys, Met, and Thr, pigs fed HML and DMLM diets showed higher SIDs (p = 0.05, p<0.05, and p<0.05, respectively) than pigs fed FPBM and HFS diets. SIDs of non-essential amino acids (aspartic acid, glycine, and alanine) were higher (p<0.05, p<0.05, and p<0.05, respectively) in pigs fed HML, FPBM, and DMLM diets than those in pigs fed the HFS diet. AID and SID of glutamic acid were higher in pigs fed HML and FPBM diets. Conclusion: In conclusion, dietary supplementation of mealworm larvae hydrolysate had higher digestibility in DM, CP, Lys, Met, and Thr compared to dietary supplementation with fermented poultry by-product and hydrolyzed fish soluble.

Enhancement of Ethanol Production by The Removal of Fermentation Inhibitors, and Effect of Lignin-derived Inhibitors on Fermentation (에탄올 생산 향상을 위한 발효저해물질 제거와 리그닌 유래 발효저해물질이 에탄올 발효에 미치는 영향)

  • Um, Min;Shin, Gyeong-Jin;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.389-397
    • /
    • 2016
  • In this study, ethanol was produced from a biomass hydrolysate that had been treated by electrodialysis (ED) and Amberlite XAD resin to remove fermentation inhibitors. Most of the acetic acid (95.6%) was removed during the ED process. Non-ionizable compounds such as total phenolic compounds, 5-hydroxymethyl furfural, and furfural were effectively removed by the XAD resin treatment. Ethanol production was improved when the ED-treated hydrolysate was treated with XAD-4 resin for a short reaction time. The highest ethanol production from ED-treated hydrolysate was $6.16g/{\ell}$ (after 72 h of fermentation) when the treatment with XAD-4 resin was for 5 min. Among the lignin-derived fermentation inhibitors tested, syringaldehyde in low concentrations (1 and 2 mM) in the hydrolysate increased ethanol production, whereas a high concentration (5 mM) inhibited the ethanol production process. A synthetic medium containing syringaldehyde and ferulic acid was prepared to investigate the synergistic effect of inhibitors on ethanol fermentation. Ethanol production decreased in the mixture of 1 mM syringaldehyde and 1 mM ferulic acid, implying that the effect of ferulic acid on ethanol fermentation is comparable to that of syringaldehyde.

Effect of the Hydrolysate of Pigs Hoof on Plant Growth and Physico-chemical Properties (Pigs hoof 가수분해물의 이화학성 및 작물 생육에 미치는 효과)

  • Han, Sang-Gyun;Cho, Chun-Hwi;Jeon, Han-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.200-205
    • /
    • 2011
  • This study was conducted to find the physico-chemical properties and the amino acid content of the pigs hoof hydrolysate, keratin protein and to investigate its fertilizer effect on the growth of crops. The keratin proteins such as pigs hoof were alkali-hydrolyzed to produce the hydrolysates. The chemical properties of the hydrolysate of pigs hoof was 6~7 of pH and $10{\sim}15dS\;m^{-1}$ of EC. Total amino acid contents released from the pigs hoof were 10.18%, respectively. The pot experiment was carried out for the cultivation of lettuce. The treatment design of these pot cultivation was composed of Control (compost + NPK), PHH-0.5, PHH-1.0, PHH-2.0 (${\times}2,000$ ; 1,000 ; 500 diluted solution of pig hoof hydrolysate). After lettuce cultivation, the pH values in all treatment soils were decreased than those in initial soils, and the exchangeable cation value was higher than that of control. In all PHH treatments, lettuce growth was better in the leaf length by 6~16% and the leaf width by 4~15% than in control. Therefore, the PHH solutions manufactured by hydrolysis process had plenty of amino acids, and among them PHH had the most abundant nutrients and amino acids with highest growth and yield effect on lettuce.

Process Development for the Recovery of Sialic Acid Fraction by Enzymatic Hydrolysis of Egg Yolk Protein (난황 단백질의 효소 가수분해에 의한 sialic acid의 회수 공정 개발)

  • Kang Byung Chul;Lee Kwang Hyun
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.9-14
    • /
    • 2005
  • Batch enzymatic hydrolysis of egg yolk protein by protease was carried out at laboratory scale coupled to an ultrafiltration module. Effect of ethanol concentrations on the performance of enzymatic hydrolysis was studied to determine the optimum condition of recovery of hydrolysate. The enzymatic hydrolysis was conducted stepwise with following conditions, $50^{\circ}C$, pH 10.0 and pH 6.5. Ethanol concentration was changed from 10 to $40\%$ (w/w). As ethanol concentration was increased, the recovery yield of total solid and protein in enzymatic hydrolysate was also increased. The content of sialic acid and protein in hydrolysate was independent of ethanol concentration. We also investigated the effect of ethanol concentration on the performance of ultrafiltration. As the concentration of ethanol in yolk protein was increased, the recovery yield of product was increased. Ultra­filtration of egg yolk protein hydrolysate was conducted to increase the content of sialic acid. Four ultrafiltation modules were used in this study, and we evaluated the performance of the UF modules. When Amicon module was used, the recovery percentage of total solid in retentate was $6.0\%$, which is the highest among the modules used. In spite of the difference in the recovery yield of total solid, the purity of sialic acid in retentate was about $2.0\%$, which was 5 times higher than that in feed. It was concluded that the recovery yield and the purity of sialic acid did not correlate with the types of modules and the size of MWCO.

Cognitive Ability Enhancement Effects in Rats by B. mori Fibroin Enzymatic Hydrolysate (견 피브로인 효소 가수분해물의 동물 인지기능 향상 효과)

  • Yeo Joo-Hong;Lee Kwang-Gill;Kweon HaeYong;Woo Soon-Ok;Han Sang-Mi;Lee Yong-Woo;Kim Jin-Il;Kim Sung-Su;Demura Makoto
    • Journal of Sericultural and Entomological Science
    • /
    • v.46 no.1
    • /
    • pp.23-27
    • /
    • 2004
  • We were investigated the cognitive ability enhancement in rats using B. mori fibroin molecular controlled hydrolysate by preparative recycle HPLC system. Also, some of its physicochemical properties and free amino acid components were investigated, too. Nuclear magnetic resonance (NMR) spectrum are measured different pattern between high (HF) and low (LF) molecular controlled B. mori fibroin samples, respectively. The in vitro test by neuron primary cell culture are showed dependent on molecular weight (Mw) of B. mori fibroin in the order of LF > MF > HF, too. However, the memorial effects in rats by in vivo test are large dependent molecular weight on that maximum 50% than control. Also, the memorial effect was higher than the enzymatic relative and acid hydrolysate, which was 50.0$\pm$2.1 and 25.9$\pm$0.32%, respectively.