• Title/Summary/Keyword: hydrological monitoring

Search Result 147, Processing Time 0.032 seconds

Proposal of USN service model for hydrological monitoring (수문 모니터링을 위한 USN 서비스 모델 제안)

  • Ham, Dae-Heon;Kim, Eu-Gene;Oh, Chung-Whan;Kim, Nam-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1683-1687
    • /
    • 2009
  • USN(Ubiquitous Sensor Network)은 어디든지 부착 가능한 센서와의 자동 교류를 통해 대상의 환경적 정보를 습득, 저장, 처리하여 지식, 정보 서비스를 언제, 어디서나, 누구에게나 제공하는 최신 네트워크이다. USN은 교통, 기상 그리고 환경 등의 공동 정보를 제공할 수 있는 차세대 국가적인 인프라로 개발될 것이다. 기존에 연구되고 있는 무선 네트워크가 높은 데이터 전송률 및 처리성능을 기본으로 하는 컴퓨팅에 초점을 둔 반면에, 센서 네트워크는 강우량 감지와 같은 애플리케이션에서 대부분 짧은 시간동안 적은 양의 전송만 수행하게 된다. 센서 네트워크는 유비쿼터스 컴퓨팅 기술을 실현하기 위한 핵심 기술적 인프라라고 할 수 있다. 본 연구에서는 USN의 정의와 기초 기술에 대한 내용을 기술하고, 센서 네트워크를 위한 통신기술, 고속 데이터 전송을 위한 광대역 통합망, 상황 인식 및 실시간 데이터 처리를 위한 미들웨어 등 USN 기반기술에 대하여 기술하였다. 또한 최근 서비스 및 기술의 개발, 표준화 동향을 분석함으로써 USN을 수문 정보 분야에 적용시킬 수 있는 방법들을 검토하였다. 더 나아가, 현존하는 USN 모델 사업 분석을 바탕으로 수자원분야에서의 기술적인 적용 가능성에 대해 검토해본다.

  • PDF

Estimation of Runoff Pollutant Loadings in Boryung Reservoir Watershed (보령담수호 유역의 유출 오염부하량 추정)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Koo, Ja-Woong;Cho, Jae-Young;Kim, Young-Joo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.30-33
    • /
    • 2001
  • This study was carried out to estimate the runoff pollutant loadings for water quality management in Boryung freshwater reservoir watershed. The hydrological monitoring system were operated for water level measurement during $1999{\sim}2000$ and temporal variation of water quality constituents such as pH, EC, total nitrogen, total phosphorus were analysed, periodically. Monthly runoff volumes by TANK model and potential pollutant loadings calculated by unit method were compared with measured values.

  • PDF

Prediction of Daily Streamflow on Agricultural Watersheds (농업유역의 일별 하천유출량 추정)

  • Im, Sang-Jun;Park, Seung-U
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.274-282
    • /
    • 2006
  • The objective of this study was to develop a hydrologic simulation model to predict daily streamflow from a small agricultural watershed considering irrigation return flow. The proposed IREFLOW(Irrigation REturn FLOW) model consists of hillslope runoff model, irrigation scheme drainage model, and irrigation return flow model, and simulates daily streamflow from an irrigated watershed. Two small watersheds were selected for monitoring of hydrological components and evaluating the model application. The relative error (RE) between observed and simulated daily streamflow were 2.9% and 6.4%, respectively, on two small agricultural watersheds (Baran and Gicheon) for the calibration period. The values of RE in daliy streamflow for the validation period were 6.0% for the Baran watershed, and 2.8% for the Gicheon watershed.

  • PDF

Analysis on hydrological monitoring of the Naesung Stream(2012~2016) (2012~2016년 기간의 내성천 수문모니터링과 사주식생 변화의 연관관계 분석)

  • Kim, Donggu;Lee, Chanjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.332-332
    • /
    • 2017
  • 본 연구는 내성천에 대한 장기간 수문 모니터링을 결과를 이용하여 사주 위에 활착하는 식생의 변화 과정을 추정하고 증명하였다. 2012년부터 2016년은 영주댐이 완공되어 정상 운영을 시작하기 이전인 시기로 자연 흐름이 마지막으로 지속된 시기이다. 이 기간에 대한 수문 모니터링 정보는 댐 하류 주요 지점에 대한 수위, 단면 측량, 유량 측정 자료, 사진 모니터링 자료를 정기적으로 조사하였다. 이러한 모니터링 결과는 내성천을 따라 형성된 관심 사주에 초점을 맞추어 분석하였다. 사주에 형성된 식생은 홍수위와 그에 따른 소류력에 의해 하상재료인 모래가 퇴적되느냐 침식되느냐에 따라 식생의 활착 및 감소가 결정된다. 이는 관심 지점에 대한 정기적인 사진 모니터링 결과에서도 확인할 수 있었다. 영주댐은 2016년 말부터 담수에 의한 정상적인 운영을 시작하여 발전 방류를 위한 조절 댐의 역할을 하고 있다. 영주댐 운영 후 내성천에 미치는 다양한 영향을 판단하기 위해 지난 5년간 모니터링 자료는 비교 자료로서 소중한 가치를 가질 것이다.

  • PDF

Assessment and Validation of New Global Grid-based CHIRPS Satellite Rainfall Products Over Korea (전지구 격자형 CHIRPS 위성 강우자료의 한반도 적용성 분석)

  • Jeon, Min-Gi;Nam, Won-Ho;Mun, Young-Sik;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.39-52
    • /
    • 2020
  • A high quality, long-term, high-resolution precipitation dataset is an essential in climate analyses and global water cycles. Rainfall data from station observations are inadequate over many parts of the world, especially North Korea, due to non-existent observation networks, or limited reporting of gauge observations. As a result, satellite-based rainfall estimates have been used as an alternative as a supplement to station observations. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and global coverage. CHIRPS is a global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. In this study, we analyze the applicability of CHIRPS data on the Korean Peninsula by supplementing the lack of precipitation data of North Korea. We compared the daily precipitation estimates from CHIRPS with 81 rain gauges across Korea using several statistical metrics in the long-term period of 1981-2017. To summarize the results, the CHIRPS product for the Korean Peninsula was shown an acceptable performance when it is used for hydrological applications based on monthly rainfall amounts. Overall, this study concludes that CHIRPS can be a valuable complement to gauge precipitation data for estimating precipitation and climate, hydrological application, for example, drought monitoring in this region.

Quantifying the 2022 Extreme Drought Using Global Grid-Based Satellite Rainfall Products (전지구 강수관측위성 기반 격자형 강우자료를 활용한 2022년 국내 가뭄 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Lee, Kwang-Ya;Do, Jong-Won;Isaya Kisekka
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.41-50
    • /
    • 2024
  • Precipitation is an important component of the hydrological cycle and a key input parameter for many applications in hydrology, climatology, meteorology, and weather forecasting research. Grid-based satellite rainfall products with wide spatial coverage and easy accessibility are well recognized as a supplement to ground-based observations for various hydrological applications. The error properties of satellite rainfall products vary as a function of rainfall intensity, climate region, altitude, and land surface conditions. Therefore, this study aims to evaluate the commonly used new global grid-based satellite rainfall product, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), using data collected at different spatial and temporal scales. Additionally, in this study, grid-based CHIRPS satellite precipitation data were used to evaluate the 2022 extreme drought. CHIRPS provides high-resolution precipitation data at 5 km and offers reliable global data through the correction of ground-based observations. A frequency analysis was performed to determine the precipitation deficit in 2022. As a result of comparing droughts in 2015, 2017, and 2022, it was found that May 2022 had a drought frequency of more than 500 years. The 1-month SPI in May 2022 indicated a severe drought with an average value of -1.8, while the 3-month SPI showed a moderate drought with an average value of 0.6. The extreme drought experienced in South Korea in 2022 was evident in the 1-month SPI. Both CHIRPS precipitation data and observations from weather stations depicted similar trends. Based on these results, it is concluded that CHIRPS can be used as fundamental data for drought evaluation and monitoring in unmeasured areas of precipitation.

Clustering of sediment characteristics in South Korean rivers and its expanded application strategy to H-ADCP based suspended sediment concentration monitoring technique (한국 하천의 지역별 유사특성의 군집화와 H-ADCP 기반 부유사 농도 관측 기법에의 활용 방안)

  • Noh, Hyoseob;Son, GeunSoo;Kim, Dongsu;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.43-57
    • /
    • 2022
  • Advances in measurement techniques have reduced measurement costs and enhanced safety resulting in less uncertainty. For example, an acoustic doppler current profiler (ADCP) based suspended sediment concentration (SSC) measurement technique is being accepted as an alternative to the conventional data collection method. In Korean rivers, horizontal ADCPs (H-ADCPs) are mounted on the automatic discharge monitoring stations, where SSC can be measured using the backscatter of ADCPs. However, automatic discharge monitoring stations and sediment monitoring stations do not always coincide which hinders the application of the new techniques that are not feasible to some stations. This work presents and analyzes H-ADCP-SSC models for 9 discharge monitoring stations in Korean rivers. In application of the Gaussian mixture model (GMM) to sediment-related variables (catchment area, particle size distributions of suspended sediment and bed material, water discharge-sediment discharge curves) from 44 sediment monitoring stations, it is revealed that those characteristics can distinguish sediment monitoring stations regionally. Linking the two results, we propose a protocol determining the H-ADCP-SSC model where no H-ADCP-SSC model is available.

Establishment and Operation of Soil Moisture Monitoring System Considering Temporal and Spatial Representation (시공간 대표성을 고려한 토양수분 모니터링 System의 구축 및 운영)

  • Kim, Ki Hoon;Kim, Sang Hyun;Lee, Ga Yeong;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.184-189
    • /
    • 2004
  • A soil moisture measuring method for a hillslope of Korean watershed was developed to configure spatial-temporal distribution of soil moisture. Intensive surveying of topography had been performed to make a refined digital elevation model(DEM) and the hydrological interpretation from flow distribution algorithm was incorporated through reverse surveying. Moreover, A long term measurement system was established to maximize representative features of spatial variation of soil moisture and operated from October 19 to 21, 2003. TDR(Time Domain Reflectometry) with a multiplex monitoring system has been operated for accurate measurements. Measurements were performed at the right side hillslope of Buprunsa located at the sulmachun watershed. The data of temporal and spatial soil moisture variation by rainfall event were collected and the variations of soil moisture were well captured.

  • PDF

Development of Levee Safety Revaluation for Satellite Images (위성 이미지를 활용한 제방 안정성 평가 기법 개발)

  • Bang, Young Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2022
  • Recently, the risk of water disasters are increasing due to climate change and the aging of river levees. Existing conventional river embankment inspections have many limitations due to the consumption of a lot of manpower and budget. Thus, it is necessary to establish a new monitoring and forecast/warning method for effective flood response. This study proposes the river levee health monitoring system by analyzing the relationship between river levee deformation and hydrological factors using Sentinel-1. The variance index calculated in this study was classified into 4 grades. And the levees collapse section was judged to be a high vulnerable point in which the variance rapidly increased based on the result of the rapid increase in soil moisture. In the future, it is expected that it will be possible to advance levee maintenance technology and improve national disaster management through the advancement of the existing levee management system and automated monitoring through the forensic method that combines remote technology.

Development and Implementation of Dam Safety Management System (댐 안전관리 시스템의 개발 및 운용)

  • Jeon, Je Sung;Lee, Jong Wook;Shin, Dong Hoon;Park, Han Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 2008
  • Recently, we can see an increasing amount of dam damage or failure due to aging, earthquakes occurrence and unusual changes in weather. For this reason, dam safety is gaining more importance than ever before in terms of disaster management at a national level. Therefore, the government is trying to come up with an array of legal actions to secure consistent dam safety. Other dam management organizations are also taking various institutional and technical measures for the same purpose. In this study, Dam Safety Management System, KDSMS, has developed for consistent and efficient dam safety management. The KDSMS consists of dam and reservoir data, a hydrological information system, a field inspection and data management system, a instrumentation and monitoring system including earthquake monitoring, a field investigation and safety evaluation system, and a collective information system. The KDSMS is a kind of enterprise management system which has been developed to deal with safety management of each field, research center, and headquarter office and their correlation as well as detailed safety information management.