• Title/Summary/Keyword: hydrogenation

Search Result 404, Processing Time 0.022 seconds

Hydrogenation of trans-Cinnamaldehyde with Hydrido-Carbonyl Osmium(II) Complexes of Chelating Phosphine Ligands

  • 정민교;허성;이원용;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.806-810
    • /
    • 1997
  • A series of new hydridocarbonyl osmium(Ⅱ) complexes, OsHCl(CO)(PPh3)(L-L)[L-L=Ph2P(CH2)nPPh2 (n=1 (1), 2 (2), 3 (3), cis-Ph2PCH=CHPPh2 (4), and Fe(η5-C5H4PPh2)2 (5)] has been synthesized from OsHCl(CO)(PPh3)3 and chelating diphosphines. These complexes have been characterized by IR, 1H NMR and elemental analysis. The catalytic activities of these complexes both for the transfer hydrogenation of trans-cinnamaldehyde with 2-propanol as the hydrogen donor, and for the selective hydrogenation of trans-cinnamaldehyde with H2, have been examined. Complexes (1)-(5) were shown to have higher selectivities for the transfer hydrogenation of the C=O bond of aldehyde than for the transfer hydrogenation of the C=C bond of aldehyde. The selectivities for the transfer hydrogenation with 2-propanol as well as for the hydrogenation with H2 have been found to decrease in the order 3 > 5 > 2 > 4 > 1. Complex (3) has shown to possess almost 90% of the selectivity to cinnamyl alcohol for transfer hydrogenation. It is also found that there is a correlation between the ν(CO) of each complex and the hydrogenation, of the C=O bond of trans-cinnamaldehyde. Overall, the selectivities with the complexes (1)-(5) are greater for the transfer hydrogenation with 2-propanol than for the hydrogenation with H2.

Volume Expansion of TiMn2-type Hydrogen Storage Alloy with Hydrogenation (TiMn2계 수소저장합금의 수소화에 따른 부피팽창)

  • PARK, CHOONG-NYEON
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.459-464
    • /
    • 2017
  • The volume expansions of $Ti_{0.95}Zr_{0.05}V_{0.4}Mn_{1.45}Fe_{0.1}Cr_{0.05}$ alloy during hydrogenation with various conditions have been investigated. The theoretical volume expansion measured with XRD for this alloy with hydrogenation was 21%. The apparent volume expansion of this alloy ingot with hydrogenation was composed of two effects. One is a hydrogenation and the other is a pulverization. The apparent volume of free alloy powder was 1.8 times greater than that of an ingot, implying the pulverization effect on the apparent volume expansion is 80%. The apparent volume expansion of the alloy ingot with hydrogenation under a unconstrained condition was about 80 (${\pm}15$)%, much smaller than that of free alloy powder which expected as 118%. In addition, The apparent volume expansion of the alloy ingot with hydrogenation under a constrained condition(Al container) was about 50%, much smaller than that of the unconsrained. This reduced apparent volume expansion of the alloy ingot could be attributed to an arrangement of alloy powder keeping its original shape of the ingot even after hydrogenation.

Hydrogenations of Butadiene Rubber and Natural Rubber by Reactive Processing

  • Suchiva, K.;Boonkerd, K.
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.332-340
    • /
    • 1999
  • Hydrogenations of BR and NR performed by a noncatalytic method using p-toluenesulphonylhydrazide were carried out by reactive processing. The experimental procedures for carrying out the reaction were established. Two steps comprising premixing of the rubber with TSH followed by hydrogenation in compression mould were proved to be suitable. The percentages of hydrogenation attained by reactive processing were higher than those of the reaction carried out in solution at the same [TSH]/[C=C] ratio, reaction temperature and time. In-creasing the reaction temperature and reaction time resulted in increases of the percentage of hydrogenation. For BR, the maximum percentage of hydrogenation obtained was 36% at [TSH]/[C=C]=1/1.5. For NR, the highest percentage of hydrogenation was 34% at [TSH]/[C=C]=1/1.5. Cis-trans isomerisation was also observed to occur during hydrogenation of both BR and NR. Thermal stabilities of the hydrogenated BR and NR were shown to improve over those or the unhydrogenated counterparts.

  • PDF

Hydrogenation of Arenes with Metallic Iridium and Rhodium Powders Prepared from Iridium(Ⅰ) and Phodium(Ⅰ)-COD Complexes under Mild Conditions

  • 진종식;이병노;문지중;송중호;박용선
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.528-533
    • /
    • 1995
  • Metallic iridium and rhodium powders prepared from the reactions of [M(COD)(PhCN)2]ClO4 (M=Ir(1), Rh(2); COD=1,5-cyclooctadiene) with hydrogen at room temperature in methylene chloride show catalytic activities for hydrogenation of arenes at room temperature under atmospheric pressure of hydrogen. Most substituents (CH3, COOH, NO2, CH2OH, CHO, OPh, OCH3, C=C, halogens and CH2Cl) on aromatic ring suppress the rate of the hydrogenation of the aromatic ring while the aromatic ring hydrogenation of phenol and 1,4-dihydroxobenzene is faster than that of benzene over these metallic powders. Hydrogenation of benzoic acid occurs only at the aromatic ring leaving the COOH group intact over iridium metal powders while benzoic acid is not hydrogenated at all over rhodium metal powders. Carbonyl, nitro, acetylenic and olefinic groups on an aromatic ring are hydrogenated prior to the aromatic ring hydrogenation. Hydrogenolysis of OH groups of phenol, benzyl alcohol and 1,4-dihydroxobenzene, and hydrodehalogenation of halobenzenes, benzyl halides and cinnamyl chloride also occur along with the hydrogenation of aromatic ring.

Cataytic Hydrogenation of o-Nitrochlorbenzene to 3,3'-Dichlorobenzidine

  • Shen, Kaihua;Li, Shude;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1785-1789
    • /
    • 2002
  • 2,2'-Dichlorohydroazobenzene was prepared by selective hydrogenation of o-nitrochlorobenzene with hydrogen in the presence of 0.8% and 5% Pd/C catalyst. O-Chloroaniline was a minor product in the catalytic hydrogenation of o-nitrochlorobenzene. The effects of base, Pd/C catalyst, and co-catalyst were discussed on catalytic hydrogenation. 2,2'-Dichlorohydroazobenzene, as an intermediate, was rearranged to 3,3'-dichlorobenzidine after reacting with HCl. It was shown that selectivity of catalytic hydrogenation of o-nitro-chlorobenzene is affected strongly by concentration of base, Pd/C catalyst, and co-catalyst. $^1Hand^{13}C$NMR spectroscopy confirmed the chemical structures of 2,2'-dichlorohydrazobenzene and 3,3'-dichlorobenzidine.

Study on the Hydrogenation and Isomerization Reaction of Dimethylcyclopentadiene (디메틸시클로펜타디엔의 수소화 및 이성화반응 연구)

  • Jeong, Byung Hun;Han, Jeong Sik;Lee, Jeong Ho;Kim, Seong Bo;Lee, Bum Jae
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.566-570
    • /
    • 2005
  • The study on the hydrogenation and isomerization of unsaturated bicyclic hydrcarbon compounds using methylcyclopentadiene dimer (MCPD) was carried out. Exo compound was prepared through isomerization reaction after two hydrogenation reaction steps. In the first hydrogenation reaction which needs one mole of hydrogen, the formation rate of monomer was increased as dimer was decomposed at reaction temperature above $100^{\circ}C$. At first hydrogenation, DHDMCPD [dihydrodi(methylcyclopentadiene)] was formed and second hydrogenation was proceeded to produce THDMCPD [tetrahydrodi(methylcyclopentadiene)], the ratio of exo to endo THDMCPD was varied by the control of 2nd hydrogenation temperature. To improve the process, continuous 1st and 2nd hydrogenation conditions were established by using the 2nd stage heat controllable reactor. Also, catalytic activities were compared by the use of halogenized aluminum, metal halides and solid acids catalysts on the isomerization reaction from endo to exo THDMCPD.

Highly Enantioselective Rh-catalyzed Transfer Hydrogenation of α-Functionalized Arylketones

  • Lee, Do-Min;Kwak, Se-Hun;Lee, Kee-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1317-1324
    • /
    • 2009
  • Asymmetric transfer hydrogenation of α-functionalized arylketones has been studied. The chiral Rh-catalyst effectively performed in transfer hydrogenation of $\alpha$-mesyloxyketones with an azeotropic mixture of formic acid/triethylamine to produce optically active 1-arylethandiols with excellent enantioselectivity.

Hydrogenation and Isomerization of Soybean Oil with Perchloratocarbonylbis-(triphenylphosphine) rhodium (Ⅰ)

  • Jeong, Hyun-Mok;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.5
    • /
    • pp.199-201
    • /
    • 1984
  • It has been found that $Rh(ClO_4)(CO)(P(C_6H_5)_3)_2$ catalyzes the hydrogenation and isomerization of soybean oil at room temperature under the atmospheric pressure of hydrogen. The hydrogenation occurs at the olefinic groups to produce saturated groups leaving the ester groups intact, and the isomerization converts $-CH = CH- CH_2-CH = CH-$ units to conjugated dienes and the dienes separated by more than two $-CH_2-$ groups. The rate of the hydrogenation is faster than that of the isomerization.

Efficient Hydrogenation Catalysts of Ni or Pd on Nanoporous Carbon Workable in an Acidic Condition

  • Lee, Dong-Hwan;Kim, Hong-Gon;Kang, Min;Kim, Ji-Man;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2034-2040
    • /
    • 2007
  • Efficient catalytic systems, where Ni or Pd is introduced in a supporting material of nanoporous carbon, have been developed for a liquid-phase hydrogenation of carboxylic acids and ketones at room temperature. It has been found that the catalysts reliably show high activities and selectivities for the hydrogenation to alcohols even in acidic conditions, and the catalytic activities depend on the preparative method of catalysts, the hydrogen pressure, the agitation rate, and the catalytic species. The hydrogenation of carboxylic acids and ketones clearly shows that the reaction rate is affected by the electronic and the steric effects, and a plausible reaction mechanism using metal hydrides as catalytic species is proposed.