DOI QR코드

DOI QR Code

Highly Enantioselective Rh-catalyzed Transfer Hydrogenation of α-Functionalized Arylketones

  • Lee, Do-Min (Bio-Organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Kwak, Se-Hun (Bio-Organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Kee-In (Bio-Organic Science Division, Korea Research Institute of Chemical Technology)
  • Published : 2009.06.20

Abstract

Asymmetric transfer hydrogenation of α-functionalized arylketones has been studied. The chiral Rh-catalyst effectively performed in transfer hydrogenation of $\alpha$-mesyloxyketones with an azeotropic mixture of formic acid/triethylamine to produce optically active 1-arylethandiols with excellent enantioselectivity.

Keywords

References

  1. For reviews, see: Fache, F.; Schulz, E.; Tommasino, L. M.;Lemaire, M. Chem. Rev. 2000, 100, 2159 https://doi.org/10.1021/cr9902897
  2. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835 https://doi.org/10.1021/cr9500038
  3. Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 25, 117 https://doi.org/10.1039/cs9962500117
  4. Juraristi, E.; Quintana, D.; Escalante, J. Aldrichm. Acta 1994, 27, 3
  5. Cole, D. C. Tetrahedron 1994, 50, 9517. https://doi.org/10.1016/S0040-4020(01)85527-7
  6. Agranat, I.; Caner, H.; Caldwell, J. Nature Rev. Drug Discov. 2002, 1, 753 https://doi.org/10.1038/nrd915
  7. Pinard, E.; Alanine, A.; Bourson, A.; Büttelmann, B.; Heitz, M.-P.; Mutel, V.; Gill, R.; Trube, G.; Wyler, R. Bioorg. Med. Chem. Lett. 2002, 12, 2615 https://doi.org/10.1016/S0960-894X(02)00470-5
  8. Kordik, C. P.;Reitz, A. B. J. Med. Chem. 1999, 42, 181 https://doi.org/10.1021/jm980521l
  9. Amici, M. D.; Micheli, C. D.; Kassi, L.; Carrea, G.; Ottolina, G.; Colombo, G. Tetrahedron 2001, 57, 1849. https://doi.org/10.1016/S0040-4020(00)01165-0
  10. Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. Eng. 1998, 37, 1986 https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<1986::AID-ANIE1986>3.0.CO;2-Z
  11. Corey, E. J.; Link, J. O. J. Org. Chem. 1991, 56, 442 https://doi.org/10.1021/jo00001a084
  12. Xing, X.; Ho, P.; Bourquin, G.; Yeh, L.-A.; Cuny, G. D. Tetrahedron 2003, 59, 9961 https://doi.org/10.1016/j.tet.2003.10.025
  13. Cho, B. T.; Yang, W. K.; Choi, O. K. J. Chem. Soc., Perkin Trans. 1 2001, 1204.
  14. Ohkuma, T.; Ishii, D.; Takeno, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 6510 https://doi.org/10.1021/ja001098k
  15. Gao, Y.; Sharpless, K. B. J. Org. Chem. 1988, 53, 4081. https://doi.org/10.1021/jo00252a036
  16. Kumar, P.; Upadhyay, R. K.; Pandey, R. K. Tetrahedron: Asymmetry 2004, 15, 3955 https://doi.org/10.1016/j.tetasy.2004.11.005
  17. Weissman, S. A.; Rossen, K.; Reider, P. J. Org. Lett. 2001, 3, 2513. https://doi.org/10.1021/ol016167u
  18. Goswami, J.; Bezbaruah, R. L.; Goswami, A.; Borthakur, N. Tetrahedron: Asymmetry 2001, 12, 3343 https://doi.org/10.1016/S0957-4166(02)00010-1
  19. Yadav, J. S.; Reddy, P. T.; Nanda, S.; Rao, A. B. Tetrahedron: Asymmetry 2001, 12, 3381 https://doi.org/10.1016/S0957-4166(02)00024-1
  20. Fardelone, L. C.; Rodrigues, J. A. R.; Moran, P. J. S. J. Mol. Cat. B: Enzymatic 2006, 39, 9. https://doi.org/10.1016/j.molcatb.2006.01.015
  21. Kamal, A.; Shaik, A. A.; Sandbhor, M.; Malik, M. S. Tetrahedron: Asymmetry 2004, 15, 3939. https://doi.org/10.1016/j.tetasy.2004.11.013
  22. Brown, R. F. C.; Jackson, W. R.; McCarthy, T. D. Tetrahedron: Asymmetry 1993, 4, 2149 https://doi.org/10.1016/S0957-4166(00)80062-2
  23. Baeza, A.; Nájera, C.; Sansano, J. M.; Saá, J. M. Chem. Eur. J. 2005, 11, 3849 https://doi.org/10.1002/chem.200401290
  24. Trost, B. M.; Yeh, V. S. C.; Ito, H.; Bremeyer, N. Org. Lett. 2002, 4, 2621 https://doi.org/10.1021/ol020077n
  25. Xiong, Y.; Wang, F.; Huang, X.; Wen, Y.; Feng, X. Chem. Eur. J. 2007, 13, 829. https://doi.org/10.1002/chem.200601262
  26. Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562 https://doi.org/10.1021/ja00133a037
  27. Fujii, A.; Hashiguchi, S.;Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521 https://doi.org/10.1021/ja954126l
  28. Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 285 https://doi.org/10.1002/anie.199702851
  29. Hashiguchi, S.; Fujii, A.; Haack, K.-J.; Matsumura, K.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 288 https://doi.org/10.1002/anie.199702881
  30. Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738 https://doi.org/10.1021/ja971570a
  31. Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97 https://doi.org/10.1021/ar9502341
  32. Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori, R.; Ikariya, T. Org. Lett. 1999, 1, 1119 https://doi.org/10.1021/ol990226a
  33. Okano, K.; Murata, K.; Ikariya, T. Tetrahedron Lett. 2000, 41, 9277 https://doi.org/10.1016/S0040-4039(00)01695-6
  34. Koike, T.; Murata, K.; Ikariya, T. Org. Lett. 2000, 2, 3833 https://doi.org/10.1021/ol0002572
  35. Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226 https://doi.org/10.1039/b513396c
  36. Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045. https://doi.org/10.1016/S0957-4166(99)00216-5
  37. Farina, V.; Reeves, J. T.; Senanayake, C. H.; Song, J. J. Chem. Rev. 2006, 106, 2734. https://doi.org/10.1021/cr040700c
  38. Mashima, K.; Abe, T.; Tani, K. Chem. Lett. 1998, 1199
  39. Mashima, K.; Abe, T.; Tani, K. Chem. Lett. 1998, 1201
  40. Murata, K.; Ikariya, T.; Noyori, R. J. Org. Chem. 1999, 64, 2186. https://doi.org/10.1021/jo990213a
  41. Matharu, D. S.; Morris, D. J.; Kawamoto, A. M.; Clarkson, G. J.; Wills, M. Org. Lett. 2005, 7, 5489 https://doi.org/10.1021/ol052559f
  42. Matharu, D. S.; Morris, D. J.; Clarkson, G. J.; Wills, M. Chem. Commun. 2006, 3232.
  43. Hamada, T.; Torii, T.; Izawa, K.; Noyori, R.; Ikariya, T. Org. Lett. 2002, 4, 4373 https://doi.org/10.1021/ol020213o
  44. Hamada, T.; Torii, T.; Izawa, K.; Ikariya, T. Tetrahedron 2004, 60, 7411 https://doi.org/10.1016/j.tet.2004.06.076
  45. Hamada, T.; Torii, T.; Onishi, T.; Izawa, K.; Ikariya, T. J. Org. Chem. 2004, 69, 7391 https://doi.org/10.1021/jo0491455
  46. Zaidlewicz, M.; Tafelska-Kaczmarek, A.; Prewysz-Kwinto, A. Tetrahedron: Asymmetry 2005, 16, 3205. https://doi.org/10.1016/j.tetasy.2005.08.012
  47. Cross, D. J.; Kenny, J. A.; Houson, I.; Campbell, L.; Walsgrove, T.; Wills, K. Tetrahedron: Asymmetry 2001, 12, 1801 https://doi.org/10.1016/S0957-4166(01)00313-5
  48. Peach, P.; Cross, D. J.; Kenny, J. A.; Mann, I.; Houson, I.;Campbell, L.; Walsgrove, T.; Wills, M. Tetrahedron 2006, 62, 1864 https://doi.org/10.1016/j.tet.2005.11.036
  49. Lee, D.-M.; Lee, J.-C.; Jeong, N.; Lee, K.-I. Tetrahedron: Asymmetry 2007, 18, 2662 https://doi.org/10.1016/j.tetasy.2007.10.046
  50. Lee, D.-M.; Kumaraswamy, G.; Lee, K.-I. Monatsh. Chem. 2009, 140, 73. https://doi.org/10.1007/s00706-008-0009-2
  51. Kumar, P.; Upadhyay, R. K.; Pandy, R. K. Tetrahedron: Asymmetry 2004, 15, 3955 https://doi.org/10.1016/j.tetasy.2004.11.005
  52. Ali, I. S.; Sudalai, A. Tetrahedron Lett. 2002, 43, 5435 https://doi.org/10.1016/S0040-4039(02)01073-0
  53. Andersson, P. G.; Schink, H. E.; Österlund, K. J. Org. Chem. 1988, 63, 8067 https://doi.org/10.1021/jo981259r
  54. Cho, B. T.; Kang, S. K.; Shin, S. H. Tetrahedron: Asymmetry 2002, 13, 1209 https://doi.org/10.1016/S0957-4166(02)00322-1
  55. Cho, B. T.; Kang, S. K.; Yang, W. K. Bull. Korean Chem. Soc. 2002, 23, 1328. https://doi.org/10.5012/bkcs.2002.23.9.1328
  56. Wang, F.; Liu, H.; Cun, L.; Zhu, J.; Deng, J.; Jiang, Y. J. Org. Chem. 2005, 70, 9424. https://doi.org/10.1021/jo0514826
  57. Lodaya, J. S.; Koser, G. F. J. Org. Chem. 1988, 53, 210 https://doi.org/10.1021/jo00236a048
  58. Koser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1982, 47, 2487 https://doi.org/10.1021/jo00133a053
  59. Lee, J. C.; Oh, Y. S.; Cho, S. H. Bull. Korean Chem. Soc. 1996, 17, 989
  60. Moriarty, R.M.; Penmasta, R.; Awasthi, A. K.; Epa, W. R.; Prakash, I. J. Org. Chem. 1989, 54, 1101 https://doi.org/10.1021/jo00266a020
  61. Yamamoto, Y.; Togo, H. Synlett 2006, 798;
  62. Ueno, M.; Nabana, T.; Togo, H. J. Org. Chem. 2003, 68, 6424. https://doi.org/10.1021/jo030045t
  63. Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 28.
  64. Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466 https://doi.org/10.1021/ja991638h
  65. San doval, C. A.; Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Noyori, R. Chem. Asian J. 2006, 1, 102. https://doi.org/10.1002/asia.200600098
  66. Brandt, P.; Roth, P.; Andersson, P. G. J. Org. Chem. 2004, 69,4885. https://doi.org/10.1021/jo030378q
  67. Sterk, D.; Stephan, M.; Mohar, B. Org. Lett. 2006, 8, 5935 https://doi.org/10.1021/ol062358r
  68. Morris, D. J.; Hayes, A. M.; Wills, M. J. Org. Chem. 2006, 71, 7035 https://doi.org/10.1021/jo061154l
  69. Cheung, F. K.; Lin, C. Minissi, F.; Criville, A. L.; Graham, M. A.; Fox, D. J.; Wills, M. Org. Lett. 2007, 9, 4659. https://doi.org/10.1021/ol702226j
  70. Wagner, K. Angew. Chem., Int. Ed. Engl. 1970, 9, 50 https://doi.org/10.1002/anie.197000501
  71. Narita, K.; Sekiya, M. Chem. Pharm. Bull. 1977, 25, 135. https://doi.org/10.1248/cpb.25.135
  72. Bartoli, G.; Bosco, M.; Marcantoni, E.; Massaccesi, M.; Rinaldi, S.; Sambri, L. Tetrahedron Lett. 2002, 43, 6331. https://doi.org/10.1016/S0040-4039(02)01368-0
  73. Zarghi, A.; Rao, P. N. P.; Knaus, E. E. Bioorg. Med. Chem. 2007, 15, 1056. https://doi.org/10.1016/j.bmc.2006.10.023
  74. Chung, J.-U.; Kim, S. Y.; Lim, J.-O.; Choi, H.-K.; Kang, S.-U.; Yoon, H.-S.; Ryu, H.; Kang, D. W.; Lee, J.; Kang, B.; Choi, S.; Toth, A.; Pearce, L. V.; Pavlyukovets, V. A.; Lundberg, D. J.; Blumberg, P. M. Bioorg. Med. Chem. 2007, 15, 6043. https://doi.org/10.1016/j.bmc.2007.06.041

Cited by

  1. ChemInform Abstract: Highly Enantioselective Rh-Catalyzed Transfer Hydrogenation of α-Functionalized Arylketones. vol.40, pp.45, 2009, https://doi.org/10.1002/chin.200945028
  2. Highly enantioselective synthesis of cyclic sulfamidates and sulfamidesviarhodium-catalyzed transfer hydrogenation vol.47, pp.8, 2011, https://doi.org/10.1039/C0CC04166A
  3. vol.137, pp.25, 2015, https://doi.org/10.1021/jacs.5b03956
  4. Asymmetric hydrogenation of α-hydroxy ketones with an iridium/f-amphox catalyst: efficient access to chiral 1,2-diols vol.4, pp.4, 2017, https://doi.org/10.1039/C6QO00810K
  5. Selective Asymmetric Transfer Hydrogenation of α-Substituted Acetophenones with Bifunctional Oxo-Tethered Ruthenium(II) Catalysts pp.16154150, 2017, https://doi.org/10.1002/adsc.201701227
  6. Synthetic methods : Part (ii) Oxidation and reduction methods vol.106, pp.None, 2009, https://doi.org/10.1039/b927087f
  7. A Practical Synthesis of the Antidepressant (S)-Duloxetine vol.35, pp.6, 2009, https://doi.org/10.5012/bkcs.2014.35.6.1894
  8. The Application of New Chiral Ferrocene Ligands in Asymmetric Transfer Hydrogenation of Ketones vol.8, pp.1, 2018, https://doi.org/10.4236/ijoc.2018.81004