• Title/Summary/Keyword: hydrogen storage materials

Search Result 261, Processing Time 0.027 seconds

Ultra Sensitive Detection of H2 in ZnO QD-based Sensors (ZnO양자점 기반 센서의 초고감도 수소 검지 특성)

  • Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.105-111
    • /
    • 2020
  • Interest and demand for hydrogen sensors are increasing in the field of H2 leakage detection during storage/transport/use and detection of H2 dissolved in transformer oil for safety issues as well as in the field of breath analysis for non-invasively diagnosing a number of disease states for a healthy life. In this study, various ZnO-based sensors were synthesized by controlling the reduction in crystallite size, decoration of Pt nanoparticles, doping of electron donating atoms, and doping of various atoms with different ionic radii. The sensing response of the various prepared ZnO-based nanoparticles and quantum dots (QDs) for 10 ppm H2 was investigated. Among the samples, the smallest-sized (3.5 nm) In3+-doped ZnO QDs showed the best sensing response, which is superior to those in previously reported hydrogen sensors based on semiconducting metal oxides. The higher sensing response of In-doped ZnO QDs is attributed to the synergic effects of the increased number of oxygen vacancies, higher optical band gap, and larger specific surface area.

Poly(vinylidene fluoride)-based Porous Carbon Nanofibers (폴리비닐리덴 풀루오라이드로부터 제조된 다공성 탄소나노섬유)

  • Chung, H.J.;Jo, S.M.;Kim, D.Y.;Chin, B.D.;Lee, D.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.334-342
    • /
    • 2005
  • 200-300 nm 직경을 지닌 폴리비닐리덴 플루오라이드 초극세 섬유를 전기방사법으로 제조하였다. 이들을 불응화시킨 후, $800-1800^{\circ}C$ 온도에서 탄화시켜 PVdF 계 탄소나노 섬유를 제조하여 구조 및 기공분석을 하였다. 이들은 20-30 nm 크기의 탄소입자로 이루어져 있으며 탄소나노입자는 1 nm이하의 슬릿형 나노기공을 지니고 있었다. 탄화온도가 증가함에 따라 비표면적은 $1500^{\circ}C$에서 $414\;m^2/g$로 감소하였으나, $1800^{\circ}C$에서는 $1300\;m^2/g$로 급격히 다시 증가하였으며 1 nm 이하의 나노기공만을 지닌 탄소섬유가 얻어졌다. 비표면적 및 기공특성과 수소저장특성을 관계를 조사하기 위하여 Magnetic Syspension Balance(MSB)를 사용한 중량법으로 평가한 이들의 수소저장능은 0.04-0.4wt%이었다.

Review of hydrogen storage in carbon nanostructured materials (나노구조 탄소재료의 수소저장에 관한 고찰)

  • Hwang, J.Y.;Choi, J.W.;Sim, K.S.;Kim, J.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.2
    • /
    • pp.103-120
    • /
    • 2001
  • 수소에너지는 환경과 에너지문제를 동시에 해결할 수 있는 가장 이상적인 에너지원으로 여겨지고 있으나 수소저장 기술이 그 이용을 제한하고 있는 실정이다. 최근 탄소나노 튜브를 비롯하여 탄소계 신소재를 이용한 수소저장 연구는 탄소재료가 가볍고 안정성이 우수한 장점을 가지고 있어서 매우 주목받고 있다. 이미 많은 연구결과들이 DOE(Department of Energy)가 발표한 상업적으로 이용 가능한 목표인 6.5wt%의 수소 저장량을 만족함에도 불구하고 아직도 그 연구 결과에 대하여 재현성 및 신뢰성이 부족한 게 사실이다. 따라서 이를 확인하려는 많은 시도들과 새로운 연구들이 필요하다고 할 수 있다. 본 논문에서는 지금까지 발표된 연구결과를 바탕으로 나노구조를 갖는 탄소재료의 수소저장특성과 수소저장방법 등을 고찰해보고 또 다양하게 제시된 연구방법들을 고찰함으로써 수소저장매체로서 탄소재료의 연구 방향을 제시하고자 하였다.

  • PDF

The Fabrication of MggTi1-(10, 20 wt%)Ni Hydrogen Absorbing Alloys by Hydrogen Induced Mechanical Alloying and Evaluation of Hydrogenation Properties(Part II : Evaluation of Pressure-Composition-Isotherm Properties) (수소 가압형 기계적 합금화법을 이용한 MggTi1-(10, 20 Wt%)Ni 수소저장합금의 제조와 수소화 특성 (제 2보 : 압력-조성-등온 특성 평가))

  • Hong, Tae-Whan;Kim, Gyeong-Bum;Kim, Yeong-Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.270-278
    • /
    • 2002
  • Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved, The main emphasis of this study was to find an economic manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties, In order to examine hydrogenation behavior, a Sieverts type automatic pressure-composition-isotherm(PCI) apparatus was used and the experiments were performed at 423, 473, 523, 573, 623 and 673K. The results of thermogravimetric analysis(TGA) reveal that the absorbed hydrogen contents are around 2.5 wt% for ($Mg_9Ti_1$)-10 wt% Ni. With increased Ni content, the absorbed hydrogen content decreases to 1.7 wt%, whereas the dehydriding starting temperatures are lowered by some 70-100K. The results of PCI on ($Mg_9Ti_1$)-20 wt% Ni show that its hydrogen capacity is around 5.3 wt% and its reversible capacity and plateau pressure are also excellent at 523K and 573K. In addition, the reaction enthalpy, $\Delta$HD.plateau, is $30.6{\pm}5.7kJ/molH_2$.

The Efficient Production on single- and Multi- Wall Carbon Nanotubes

  • Shinohara, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.207-207
    • /
    • 2000
  • Multi- and single-wall carbon nanotubes are promising new carbon materials in nano-electronics, field-emitters, CRT-displays, hydrogen storage materials, biomedical tracers and so forth. The present talk will deal with a high-yield synthesis on quasi-aligned multi-wall carbon nanotubes via a chemical vapor deposition technique. I will also talk about a possible growth mechanism on single-wall carbon nanotubes based on newly obtained experimental results.

  • PDF

Hydrogenation Properties of $Mg_2$Ni-(5, 10mass)$NbH_x$ Composites by Reactive Mechanical Alloying (기계적 합금화법에 의한 $Mg_2$Ni-(5, 10mass%)$NbH_x$ 복합재료의 수소화 특성)

  • Cho, Kyoung-Won;Park, Ji-Hee;Kim, Kyeong-Il;Kim, Soo-Hyun;Jung, Mi-Ewon;Kim, Sang-Hern;Choi, Jae-Ha;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.512-518
    • /
    • 2009
  • Mg 및 Mg합금은 수소 저장량이 7.6wt.%로 비교적 높고 자원도 풍부하여 값이 싼 장점을 가지고 있으나 산화반응성이 높고 활성화 에너지가 크기 때문에 반응온도가 높고 반응시간이 긴 단점을 가지고 있다. 이러한 단점을 극복하기 위해 일반적으로 Mg 및 Mg합금의 표면 개질화, 금속간 화합물 형성, 전이금속 첨가에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 전이금속인 Nb를 촉매제로 사용하여 수소화 특성을 개선하고자 기계적 합금화법(MA;Mechanical Alloying)을 실시하여 복합재료를 합성한 후 수소화 반응을 평가하였다. XRD, SEM, TEM, PSA, TG/DSC 분석을 수행하였으며 Sievert's 형 PCT를 이용하여 온도 및 압력 변화에 따른 특성평가를 하였다. 전이금속인 Nb의 첨가로 수소화 반응개시온도가 낮아지고 수소 저장량이 향상되는 거동을 보였다. 특히, 5mass%Nb가 10mass%Nb 보다 수소 저장량 및 반응속도가 좋은 결과를 보였다.

The Electrochemical Properties of Sulfur Electrode with Composition of MWNT for Li Battery (리튬 전지용 유황전극의 탄소나노튜브 조성에 따른 전기화학적 특성)

  • Yu, Ji-Hyun;Park, Jin-Woo;Kim, Ki-Won;Ryu, Ho-Suk;Ahn, Jou-Hyeon;Kim, Dong-Ju;Jin, Chang-Soo;Shin, Kyung-Hee;Ahn, Hyo-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • We investigated the effect of composition of a sulfur electrode with MWNT on the discharge behavior and cycling property of a Li/S cell. The MWNT content of a 60wt.% sulfur electrode varied from 10 wt.% to 30 wt.%. The optimum content of MWNT is 20wt.%, which shows the best cycling property. The first discharge capacity is 1166 mAh/g and decrease to the 542 mAh/g after 30th cycle. The homogeneous distribution of MWNT is an important factor for cycling properties.

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook;Kim, Dongwook;Na-Phattalung, Sutassana;Ihm, Jisoon
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850138.1-1850138.6
    • /
    • 2018
  • Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

Effects of the Surface Coating Treatment of Cathode Materials on the Electrochemical Characteristics of Ni-MH Secondary Batteries (양극 활물질의 표면 코팅처리가 Ni-MH 2차 전지의 전기화학적 특성에 미치는 영향)

  • Kim, Byoung-Soub;Yang, Dong-Cheol;Park, Bong-Gi;Park, Choong-Nyeon;Park, Chan-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.495-503
    • /
    • 2011
  • The sealed nickel-metal hydride (Ni-MH) secondary battery are primarily used as energy storage for the HEV. But, the research on Ni-MH battery has focused on anode materials. In the present study, we investigate to improve the electrochemical characteristics of Ni-MH batteries using the surface treatment of $Ni(OH)_2$ cathode by CoOOH. Surface treated $Ni(OH)_2$ cathode showed significant improvement in the activation behavior, rate capability, charge retention, and cycle life of the batteries were significantly improved. In addition, the surface treated electrode exhibited the higher overvoltage for oxygen evolution than the untreated electrode. This phenomenon indicates that the charge efficiency can be improved by suppressing the oxygen evolution on cathode.