• Title/Summary/Keyword: hydrogen recirculation system

Search Result 35, Processing Time 0.026 seconds

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

Design and Performance Test for a Fuel Cell Ejector to Reduce its Development Cost (개발 비용 감소를 위한 연료전지용 이젝터의 설계 및 성능평가)

  • Kim, Min-Jin;Kim, Dong-Ha;Yu, Sang-Phil;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 2006
  • Recirculation for the unreacted fuel is necessary to improve the overall efficiency of the fuel cell system and to prevent fuel starvation since the fuel cell for a vehicle application is a closed system. In case of the automotive fuel cell, the ejector which does not require any parasitic power is good for the performance improvement and easy operation. It is essential to design the customized ejector due to the lack of the commercial ejector corresponding to the operating conditions of the fuel cell systems. In this study, the design methodology for the ejector customized to an automotive fuel cell is proposed. The model based sensitivity analysis prevents the time-consuming redesign and reduces the cost of developing ejector. As a result, the customized ejector to meet the desired performance within overall operating range has developed for the PEMFC automotive system.

Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat (선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발)

  • Han, In-Su;Jeong, Jeehoon;Kho, Back-Kyun;Choi, Choeng Hoon;Yu, Sungju;Shin, Hyun Khil
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.

The Ejector Design and Test for 5kW MCFC System (5kW 용융탄산염 연료전지(MCFC) 이젝터 설계 및 시험)

  • Kim, Beom-Joo;Kim, Do-Hyeong;Lee, Jung-Hyun;Lee, Sung-Yoon;Kim, Jin-Yoel;Kang, Seung-Won;Lim, Hee-Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • An ejector is a machine utilized for mixing fluid, maintaining a vacuum, and transporting fluid. The Ejector enhances system efficiency, are easily operated, have a mechnically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 5 kW Molten Carbonate Fuel Cell system at KEPRI(Korea Electric Power Research Institute). In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat in the designed ejector. This helps to define important criteria of ejectors for MCFC recycling.

An Experimental Study on the Cooling Tower of Plume Prevention and Performance Improvements (냉각탑 백연방지의 성능 향상에 관한 실험적 연구)

  • JEONG, SOON YOUNG;LEE, BYEONG CHEON;KIM, SUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.578-584
    • /
    • 2019
  • The occurrence of white plume in the cooling tower is phenomenon that the steam in the air through the cooling tower fan is condensed again by the cold ambient air to become saturated moist air. Accordingly, this can cause many problems like spoiling landscape around the cooling tower, odor of ambient air, falling accident by frozenness in the winter, and traffic accident, etc. This study was to install the heat exchanger in the inside of the cooling tower in order to prevent the white plume phenomenon in the cooling tower without affecting the performance of cooling tower. In addition, this study was to discharge the part of cooling water into the atmosphere through the recirculation of heat exchanger after creating dry air by heating the saturated moist air to the dew point temperature. At that time, this study was to conduct the experimental study in order to secure the optimal design data to prevent the white plume in the cooling tower because it checked the dry·moist temperature and relative humidity in the inside·outside of cooling tower on the moist air, and evaluated the performance of the heat exchanger.

Evaluation for the Numerical Model of a Micro-Bubble Pump (미세버블펌프 수치모델평가 및 검증)

  • LEE, SANG-MOON;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.121-126
    • /
    • 2016
  • Hydraulic performance of a micro-bubble pump has been analyzed by numerical simulation and experimental measurements. Flow recirculation apparatus between the pump inlet and outlet reserviors has been adopted to measure pump performance according to flow conditions sequentially. To analyze three-dimensional flow field in the micro-bubble pump, general analysis code, CFX, is employed. SST turbulence model is employed to estimate the eddy viscosity and compared the pump performance to k-${\varepsilon}$ model. Unstructured grids are used to represent a composite grid system including blade, casing and inlet casing. It is found that the numerical model used in the present study is effective to evaluate the pump performance. From the numerical simulation, low velocity region due to pressure loss is decreased where pump efficiency has maximum value. Detailed flow field inside the micro-bubble pump is also analyzed and compared.

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (5kW 용융탄산염 연료전지 이젝터 설계 및 시험)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Jung, Sang-Chun;Lee, Sung-Yoon;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.53-56
    • /
    • 2008
  • An ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The Ejector is applied for a variety of industrial fields such as refrigerators and power plants. It is adopted to recycle anode off gas safely in 5kW Molten Carbonate Fuel Cell system of KEPRI(Korea Electric Power Research Institute). The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat. In addition, the performance curve of the ejector and the differential pressure in diffuser is observed.

  • PDF

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2227-2230
    • /
    • 2008
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen accumulates in anode recirculation system and excessive buildup of nitrogen in the recirculating anode gas lowers the hydrogen concentration and finally affects the performance of fuel cell stacks. In this study, characterization of nitrogen gas crossover was investigated in PEM fuel cell stacks. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen at the exit of anode. Results show that anode and cathode stoichiometric number ($SR_c$) have a big effect of nitrogen crossover.

  • PDF

Measurement and Analysis of Coal Conversion Efficiency for a Coal Recirculating Fuel Cell Simulator (석탄순환형 연료전지 모사시스템용 석탄전환율 측정 및 분석법개발에 관한 연구)

  • Lee, Sangcho;Kim, Chihwan;Hwang, Munkyeong;kim, Minseong;Kim, Kyubo;Jeon, Chunghwan;Song, Juhun
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • There is a new power generation system such as direct coal fuel cell (DCFC) with a solid oxide electrolyte operated at relatively high temperature. In the system, it is of great importance to feed coal continuously into anodic electrode surface for its better contact, otherwise it would reduce electrochemical conversion of coal. For that purpose, it is required to improve the electrochemical conversion efficiency by using either rigorous mixing condition such as fluidized bed condition or just by recirculating coal particle itself successively into the reaction zone of the system. In this preliminary study, we followed the second approach to investigate how significantly particle recycle would affect the coal conversion efficiency. As a first phase, coal conversion was analyzed and evaluated from the thermochemical reaction of carbon with air under particle recirculating condition. The coal conversion efficiency was obtained from raw data measured by two different techniques. Effects of temperature and fuel properties on the coal conversion are specifically examined from the thermochemical reaction.

Biogas-Microturbine Distributed Generation Developement at Gong-Ju Public Livestock Wastewater Treatment Facility (공주 축산폐수공공처리장에서의 바이오가스-마이크로터빈 분산발전시스템 개발)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Lee, Ki-Chul;Kang, Ho;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.229-234
    • /
    • 2008
  • Korea Electric Power Corporation (KEPCO) has started the nation's first biogas-microturbine project in the city of Gongju as an effort to encourage the utilization of wasted biogas containing useful energy source in the form of $CH_4$. The goal of the project is to set up the biogas microturbine co-generation system for utilizing biogas as an energy source and improving the economics of the wastewater treatment plant. Wastewater treatment processes were investigated in depth to find improvement possibility. Changes in internal recirculation ratio and pre-treatment degree are needed to optimize plant operation and biogas production. Biogas pre-treatment system satisfies Capstone's fuel condition requirement with the test result of 99.9% and 90.2% of hydrogen sulphide and ammonia is removal performance. Installation of microturbine and manufacture of heat exchanger to warm anaerobic digester has been done successfully. Expected economic profit produced by the system is coming from energy saving including electricity 115,871kWh/year and heat contained in exhaust gas 579GJ/year.

  • PDF