• 제목/요약/키워드: hydrogen peroxide stress

Search Result 503, Processing Time 0.028 seconds

Search for Plant Extracts with Protective Effects of Pancreatic Beta Cell against Oxidative Stress (산화적 스트레스에 대한 췌장 베타 세포 보호활성 식물추출물 탐색)

  • Lee, Dong-Sung;Jeong, Gil-Saeng;An, Ren-Bo;Li, Bin;Byun, Erisa;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.4
    • /
    • pp.335-340
    • /
    • 2008
  • Diabetes mellitus is metabolic disorder characterized by hyperglycemia caused by insufficient insulin secretion or insulin receptor insensitivity to endogenous insulin. It is well-known that hyperglycemia is one of the main causes of oxidative stress in both type 1 and 2 diabetes. Oxidative stress is related by death of pancreatic ${\beta}$ cell and dysfunction of ${\beta}$ cell. Although ${\beta}$ cell death or dysfunction is induced by many substances or molecules, increased evidences that oxidative stress plays a crucial role in ${\beta}$ cell death or dysfunction. Considering the importance of oxidative stress in the pathogenesis of diabetes mellitus, we investigated the cytoprotective effects against hydrogen peroxide-induced oxidative stress in pancreatic ${\beta}$ cell line RIN-m5F cell. 110 Plant sources were collected in Mt. Baek-du, and extracted with methanol. These extracts had been screened the protective effects against hydrogen peroxide-induced oxidative damage in RIN-m5F cells at 50 and 200 ${\mu}g$/ml. Of these, ten methanolic extracts, aerial part of Erigenron cannadensis, aerial part of Lespedeza juncea, whole plant of Alopecurus aequalis, fruit of Lycium chinense, leaf of Morus alba, rhizome of Polygonatum odoratum, root of Ampelosis japonica, whole plant of Ranunculus japonicus, aerial part of Polygonum sieboldii, rhizome of Arisaema amurense var. violaceum showed significant protective effects against hydrogen peroxide-induced oxidative damage in pancreatic ${\beta}$ cell line RIN-m5F cell.

Protective effect of Cordyceps militaris against hydrogen peroxide-induced oxidative stress in vitro

  • He, Mei Tong;Lee, Ah Young;Park, Chan Hum;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Excessive production of reactive oxygen species (ROS) such as hydroxyl (${\cdot}OH$), nitric oxide (NO), and hydrogen peroxide ($H_2O_2$) is reported to induce oxidative stress. ROS generated by oxidative stress can potentially damage glial cells in the nervous system. Cordyceps militaris (CM), a kind of natural herb widely found in East Asia. In this study, we investigated the free radical scavenging activity of the CM extract and its neuroprotective effects in $H_2O_2$-induced C6 glial cells. MATERIALS/METHODS: The ethanol extract of CM ($100-1,000{\mu}g/mL$) was used to measure DPPH, ${\cdot}OH$, and NO radical scavenging activities. In addition, hydrogen peroxide ($H_2O_2$)-induced C6 glial cells were treated with CM at $0.5-2.5{\mu}g/mL$ for measurement of cell viability, ROS production, and protein expression resulting from oxidative stress. RESULTS: The CM extract showed high scavenging activities against DPPH, ${\cdot}OH$, and NO radicals at concentration of $1,000{\mu}g/mL$. Treatment of CM with $H_2O_2$-induced oxidative stress in C6 glial cells significantly increased cell viability, and decreased ROS production. Cyclooxygenase-2 and inducible nitric oxide synthase protein expression was down-regulated in CM-treated groups. In addition, the protein expression level of phospho-p38 mitogen-activated protein kinase (p-p38 MAPK), phospho-c-Jun N-terminal kinase (p-JNK), and phospho-extracellular regulated protein kinases (p-ERK) in $H_2O_2$-induced C6 glial cells was down-regulated upon CM administration. CONCLUSION: CM exhibited radical scavenging activity and protective effect against $H_2O_2$ as indicated by the increased cell viability, decreased ROS production, down-regulation of inflammation-related proteins as well as p-p38, p-JNK, and p-ERK protein levels. Therefore, we suggest that CM could play the protective role from oxidative stress in glial cells.

The Influence of Hydrogen Peroxide Treatment on Water Stress, Photosynthesis and Thermotolerance of Cucumber(Cucumis sativus) in Greenhouse Cultivation during Summer (Hydrogen Peroxide 처리가 여름철 시설오이의 수분 스트레스, 광합성, 내서성에 미치는 영향)

  • Woo Young-Hoe;Kim Hyung-Jun;Kim Tae-Young;Kim Ki-Deog;Huh Yun-Chan;Chun Hee;Cho Ill-Hwan;Nam Yooun-Il;Ko Kwan-Dal;Lee Kwan-Ho;Hong Kue-Hyon
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This studies were carried out in summer season to increase high temperature tolerance using hydrogen peroxide treatments on cucumber in greenhouse. The water stress of cucumber in greenhouse by the hydrogen peroxide treatments showed as control>250 mM>500 mM treatments in order. The photosynthesis rate of cucumber at $30^{\circ}C$ did not show difference with each hydrogen peroxide treatment in temperature controlled greenhouse. However, the photosynthesis rate of cucumber in the control and hydrogen peroxide treatments at $40^{\circ}C$ was significantly different. The photosynthesis rate of cucumber in combined treatment with 1,000 $mg{\cdot}L^{-1}\;CO_2$ supply and hydrogen peroxide was also higher than control, however, there was no different of photosynthesis in 250 mM and 500 mM treatment. The value of $F_v/F_m$ and $F_m/F_o$ of chlorophyll fluorescent in 500 mM hydrogen peroxide treatment at $40^{\circ}C$ was highest. Also the activity of POD, the antioxidant enzyme, was higher with high hydrogen peroxide concentration than the other treatments. The high temperature limits for growth were $43^{\circ}C$ in the control, $44^{\circ}C$ in the 250 mM and $46^{\circ}C$ in the 500 mM according to analyze chlorophyll fluorescent $F_o$. The high temperature tolerance in cucumber increased approximately $3^{\circ}C$ by the hydrogen peroxide treatments under this experiment conditions.

Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor) (과산화수소 처리가 수수의 발아 및 초기 생장에 미치는 효과)

  • Shim, Doobo;Song, Ki Eun;Park, Chan Young;Jeon, Seung Ho;Hwang, Jung Gyu;Kang, Eun-ju;Kim, Jong Cheol;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.140-148
    • /
    • 2018
  • As the global warming causing desertification increase, there is growing concern about damage of crops. It was to investigate how the treatment with hydrogen peroxide before leaf development affects the growth and yield of sorghum for minimizing a damage of crops to drought. The germination experiment was conducted at alternating temperature of $25^{\circ}C/20^{\circ}C$(12 hr/12 hr) under water stress condition of 0 ~ -0.20 MPa adjusted with PEG solution containing 0 and 10 mM $H_2O_2$. In order to know the effect of foliar application of hydrogen peroxide on the growth of sorghum, 10 mM hydrogen peroxide was treated to leaves at 3-leaf stage of sorghum growing in greenhouse conditions. Seed germination rate was increased by 20% in hydrogen peroxide treatment as compared to the Control. under water stress conditions (-0.15 ~ -0.20 MPa). The length of seedlings was also on the rise by the hydrogen peroxide treatment. In the greenhouse pot experiment, the morphological characteristics (plant height, stem diameter, leaf length, and leaf number) and physiological characteristics (chlorophyll content, chlorophyll fluorescence (Fv/Fm), stomatal conductance) were higher in the plants treated with hydrogen peroxide under the drought stress condition than those of plants of $H_2O$ treatment. Experiment conducted with the soil moisture gradient system showed that the foliar application of hydrogen peroxide increased photosynthetic ability of sorghum plant with respect to SPAD value and stomatal conductance and rooting capacity (root weight and root length) under drought condition. Generally, hydrogen peroxide treatment in sorghum increased the tolerance to drought stress and maintained better growth due to ameliorating oxidative stress.

Response of Ascorbate Peroxidase and Dehydroascorbate Reductase in Lettuce (Lactuca sativa L.) Leaves Exposed to Cold Stress (저온 처리한 상추의 잎 내에서 ascorbate peroxidase와 dehydroascorbate reductase의 반응)

  • Kang, Sang-Jae
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1705-1711
    • /
    • 2008
  • To investigate the relationship between cold stress and the activity of ascorbate peroxidase(APX), dehydroascorbate reductase (DHAR), mRNA expression level of two enzymes, hydrogen peroxide content was studied in lettuce leaves under stress condition imposed by cold stress at $4^{\circ}C$ for 24 hr in the dark and following recovery at $20^{\circ}C$ from cold stress. Hydrogen peroxide content increased gradually in lettuce leaves during cold stress, but decreased slightly following recovery from cold stress. Soluble protein content, however, decreased gradually during cold stress, and then rapidly returned to normal levels following recovery. Total chlorophyll content decreased gradually during cold stress, and then keep constant following recovery. The patterns of chlorophyll a and b content similar to that of total chlorophyll content, and carotenoid content didn't change. The ratio of chlorophyll a and total chlorophyll was increased during cold stress, but decreased with rapid during cold stress, and then the ratio returned to normal levels following recovery. During cold stress, the activity of APX and DHAR in the lettuce leaves increased dramatically, and also transcript levels of mRNA of APX and DHAR, as determined by probing 32P-labeled single stranded RNA of APX and DHAR, highly increased and returned to normal levels following recovery, respectively. Relationship between APX and DHAR activity and hydrogen peroxide highly related ($R^2$=0.8715 and 0.8643), whereas between hydrogen peroxide and total chlorophyll content and soluble content related reversely ($R^2$=0.5021 and 0.8915).

Melatonin Protects Human Adipose-Derived Stem Cells from Oxidative Stress and Cell Death

  • Tan, Shaun S.;Han, Xiaolian;Sivakumaran, Priyadharshini;Lim, Shiang Y.;Morrison, Wayne A.
    • Archives of Plastic Surgery
    • /
    • v.43 no.3
    • /
    • pp.237-241
    • /
    • 2016
  • Background Adipose-derived stem cells (ASCs) have applications in regenerative medicine based on their therapeutic potential to repair and regenerate diseased and damaged tissue. They are commonly subject to oxidative stress during harvest and transplantation, which has detrimental effects on their subsequent viability. By functioning as an antioxidant against free radicals, melatonin may exert cytoprotective effects on ASCs. Methods We cultured human ASCs in the presence of varying dosages of hydrogen peroxide and/or melatonin for a period of 3 hours. Cell viability and apoptosis were determined with propidium iodide and Hoechst 33342 staining under fluorescence microscopy. Results Hydrogen peroxide (1-2.5 mM) treatment resulted in an incremental increase in cell death. 2 mM hydrogen peroxide was thereafter selected as the dose for co-treatment with melatonin. Melatonin alone had no adverse effects on ASCs. Co-treatment of ASCs with melatonin in the presence of hydrogen peroxide protected ASCs from cell death in a dose-dependent manner, and afforded maximal protection at $100{\mu}M$ (n=4, one-way analysis of variance P<0.001). Melatonin co-treated ASCs displayed significantly fewer apoptotic cells, as demonstrated by condensed and fragmented nuclei under fluorescence microscopy. Conclusions Melatonin possesses cytoprotective properties against oxidative stress in human ASCs and might be a useful adjunct in fat grafting and cell-assisted lipotransfer.

Study of Ojayeonjonghwan on hydrogen peroxide-induced oxidative stress in male reproductive GC-1 germ cell lines (Hydrogen peroxide에 의해 유도된 남성 생식 세포 GC-1 cell에 미치는 오자연종환(五子衍宗丸)의 효과 연구)

  • Chang, Mun Seog;Lee, Ho Chul;Lee, Seung Ho;Park, Seong Kyu
    • Herbal Formula Science
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Objectives : The purpose of this study was to investigate the antioxidant activity of water extract of Ojayeonjonghwan (OYH) in GC-1 germ cell lines. Methods : DPPH radical scavenging activity and cell viability assays in GC-1 germ cell lines were performed. In addition, the protective effects of OYH against hydrogen peroxide-induced oxidative stress in GC-1 germ cell lines were examined by measuring cell viability after H2O2 treatmet. The formation of ROS and the antioxidant enzymes activity such as SOD and catalase were measured in the same condition. Results : OYH scavenged DPPH radical dose-dependent manner and the IC50 was 63.79 ㎍/ml. OYH showed no cytotoxicity at concentration of 1, 10, 100 ㎍/ml. The hydrogen peroxide-induced cytotoxicity of GC-1 germ cell lines was protected to 53.66% by OYH at concentration of 10 ㎍/ml. OYH effectively inhibited ROS production in GC-1 germ cell lines. Mn SOD and catalase protein expression were significantly increased in GC-1 germ cell lines, but Cu/Zn SOD protein expression was not significantly changed. Conclusions : In conclusion, OYH has antioxidant activities against hydrogen peroxide-induced oxidative stress in GC-1 germ cell lines.

Alterations of Antioxidant Enzymes in Response to Oxidative Stress and Antioxidants (산화적 스트레스 및 항산화제가 항산화효소 활성에 미치는 영향)

  • 김안근;김지현
    • Biomolecules & Therapeutics
    • /
    • v.9 no.4
    • /
    • pp.249-257
    • /
    • 2001
  • The effect of oxidative stress on the alterations of different antioxidant enzyme activities was investigated in human skin melanoma cell line (SK-MEL-2). Oxidative stress was induced by the exposure to hydrogen peroxide ($H_2O$$_2$). SK-MEL-2 cells were treated with antioxidants such as vitamin E and selenomethionine in combination with $H_2O$$_2$. SK-MEL-$_2$ cells were exposed to various concentrations of $H_2O$$_2$ and measured the time course of changes in cell viability and antioxidant enzyme activities for 24 hr. Oxidative stress was induced by the exposure to 2.5mM hydrogen peroxide ($H_2O$$_2$) resulted in declining significantly for 24 hr. GPX and CAT activities peaked at 3 hr and returned to control levels by 24 hr. On the contrary, SOD activity was inactive before 6 hr but recovered at 24 hr. In case vitamin E (Vit E) and selenomethionine (Se-Met) were used at nontoxic concentrations (25$\mu$M Vit E/500$\mu$M Se-Met) to oxidative stress was induced by the exposure to hydrogen peroxide ($H_2O$$_2$) led to a 3- and 5-fold increase on the viability comparing to control and caused an increase in GPX activity respectively.

  • PDF

Antioxidative effect of flavonol quercetin and hydrocaffeic acid against a oxidative stress on B16F10 murine melanoma cell of pretreated with hydrogen peroxide

  • Hue, Jeong-Sim;Kim, An-Keun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.210.1-210.1
    • /
    • 2003
  • In this study, we investigated the effect of inhibition of proliferation and antioxidant effect on B16F10 murine melanoma cell. Also, we examined by MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and intracellular reactive oxygen intermediate levels and the levels of catalase(CAT), superoxide dismutase (SOD), and glutathione peroxidase(GPX) an adaptive response of oxidative stress on B16F10 murine melanoma cell of pretreated with hydrogen peroxide. (omitted)

  • PDF

Gene Profile of Mesenchymal Stem Cell Induced by SAC or Hydrogen Peroxide (H2O2) (마늘성분 SAC 및 Hydrogen Peroxide에 의한 줄기세포의 유전자 발현 윤곽)

  • Park, Ran-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.863-870
    • /
    • 2012
  • Though hydrogen peroxide ($H_2O_2$) causes a deleterious effect to cells with its reactive oxygen species resulting in cell death, S-allyl cysteine (SAC, a bioactive organosulfur compound of aged garlic extract) has been known to have a cytoprotective effect. Few reported profiles of gene expression of $H_2O_2$ and SAC treated human cord blood derived mesenchymal stem cells (MSC). This study revealed changes in the profile of twenty-one genes grouped by oxidative stress, antioxidant, cell death, anti-apoptosis and anti-aging by quantitative real time PCR. A concentration of $100{\mu}M$ of SAC or $50{\mu}M$ of $H_2O_2$ was applied to MSC which show moderate growth and apoptosis pattern. $H_2O_2$ treatment enhanced expression of eleven genes out of twenty-one genes compared with that of control group, on the contrary SAC suppressed expression of eighteen genes out of twenty-one genes except C ros oncogene. SAC decreased expression of oxidative stress genes such as SOD1, CAT and GPX. These results seemed consistent with reports which elucidated over-expression of NF-${\kappa}$B by $H_2O_2$, and suppression of it by SAC. This study will confer basic information for further experiments regarding the effects of SAC on gene levels.