DOI QR코드

DOI QR Code

Response of Ascorbate Peroxidase and Dehydroascorbate Reductase in Lettuce (Lactuca sativa L.) Leaves Exposed to Cold Stress

저온 처리한 상추의 잎 내에서 ascorbate peroxidase와 dehydroascorbate reductase의 반응

  • Kang, Sang-Jae (Dept. of Environmental Horticulture, Kyungpook Nat'l University)
  • 강상재 (경북대학교 환경원예학과)
  • Published : 2008.12.30

Abstract

To investigate the relationship between cold stress and the activity of ascorbate peroxidase(APX), dehydroascorbate reductase (DHAR), mRNA expression level of two enzymes, hydrogen peroxide content was studied in lettuce leaves under stress condition imposed by cold stress at $4^{\circ}C$ for 24 hr in the dark and following recovery at $20^{\circ}C$ from cold stress. Hydrogen peroxide content increased gradually in lettuce leaves during cold stress, but decreased slightly following recovery from cold stress. Soluble protein content, however, decreased gradually during cold stress, and then rapidly returned to normal levels following recovery. Total chlorophyll content decreased gradually during cold stress, and then keep constant following recovery. The patterns of chlorophyll a and b content similar to that of total chlorophyll content, and carotenoid content didn't change. The ratio of chlorophyll a and total chlorophyll was increased during cold stress, but decreased with rapid during cold stress, and then the ratio returned to normal levels following recovery. During cold stress, the activity of APX and DHAR in the lettuce leaves increased dramatically, and also transcript levels of mRNA of APX and DHAR, as determined by probing 32P-labeled single stranded RNA of APX and DHAR, highly increased and returned to normal levels following recovery, respectively. Relationship between APX and DHAR activity and hydrogen peroxide highly related ($R^2$=0.8715 and 0.8643), whereas between hydrogen peroxide and total chlorophyll content and soluble content related reversely ($R^2$=0.5021 and 0.8915).

상추식물에서 저온 처리를 하였을 때 저온 적응성 획득 메카니즘과 관련된 APX와 DHAR의 활성도와 mRNA 발현 수준 등과의 관련성을 조사한 결과는 다음과 같다. 잎 조직내 과산화수소의 함량은 일정하게 증가하다가 $20^{\circ}C$에서 저온처리를 회복시키면 그 함량이 정상상태로 회복하는 경향을 보였으나 단백질의 함량은 반대의 경향을 나타내었다. 엽록소의 함량은 저온스트레스를 처리할 경우 엽록소 a와 b 및 총 엽록소의 함량이 점차 감소하는 경향을 보였으며 저온스트레스 회복 시 다시 증가하는 경향을 보였으나 카로티노이드 함량의 변화는 거의 일어나지 않고 일정한 수준을 유지하는 것으로 나타났다. 총 엽록소에 대한 엽록소a의 비율은 저온처리 12시간까지는 증가하다가 24시간 이후 급격하게 감소하게 되고 저온스트레스를 회복시켰을 때 정상 수준으로 회복되는 경향을 나타내었다. APX와 DHAR의 활성도는 저온 처리가 진행됨에 따라 상추의 잎 조직 내에서 급격하게 증가하는 경향을 보이고 있으나 적온으로 회복시키면 정상 수준으로 유지되었다. 저온처리 시간이 경과함에 따라 APX와 DHAR의 mRNA의 발현 수준이 크게 증가하는 경향을 보였다가 원래 수준으로 회복되었다. APX의 활성도와 과산화수소의 함량과의 상관관계는 상추의 잎 조직 내 과산화수소의 함량이 증가하면 APX의 활성도가 증가하는 경향 ($R^2$=0.8715)을 보였으며, DHAR의 활성도와 과산화수소의 함량도 동일한 경향으로 증가($R^2$=0.8643)하였다. 그러나 과산화수소의 생성량이 증가함에 따라 엽록소의 함량과 단백질의 함량은 저온 스트레스처리로 과산화수소의 생성량이 증가하면 엽록소의 함량($R^2$=0.5021)과 수용성단백질의 함량과는 감소하는 경향($R^2$=0.8915)을 보였다.

Keywords

References

  1. Alexieva, V., I. Sergiev, S. Mapelli and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment 24, 1337-1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x
  2. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1-15. https://doi.org/10.1104/pp.24.1.1
  3. Asada, K. and M. Takahashi. 1987. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition: Topics in photosynthesis, pp. 227-287, In Kyle, D. J., C. B. Osmond and C. J. Arntzen (eds.), Elsevier, Amsterdam.
  4. Asada, K. 1992. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum. 85, 235-241. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 59, 248-254.
  6. Chang, S., J. Puryear and J. Cairney. 1993. A simple method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11, 113-116. https://doi.org/10.1007/BF02670468
  7. Chang, C. C., L. Ball, M. J. Fryer, N. R. Baker, S. Karpinski and P. M. Mullineaux. 2004. Induction of ascorbate peroxidase 2 express in wounded Arabidopsis leaves does involve known wound signaling pathways but is associated with changes in photosynthesis. Plant J. 38, 499-511. https://doi.org/10.1111/j.1365-313X.2004.02066.x
  8. Chen, Z., T. E. Young, J. Ling, S. C. Chang and D. R. Gallie. 2003. Increasing vitamin C content of plants through enhanced ascorbate recycling. PNAS 100, 3525-3530. https://doi.org/10.1073/pnas.0635176100
  9. Ensminger, I., F. Busch and N. P. A. Huner. 2006. Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiologia Plantarum 126, 28-44. https://doi.org/10.1111/j.1399-3054.2006.00627.x
  10. Foyer, C. H., J. Rowell and D. Walker. 1983. Measurements of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta. 157, 239-244. https://doi.org/10.1007/BF00405188
  11. Hossain, M. A. and K. Asada. 1984. Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant and Cell Physiol. 25, 85-92.
  12. Kang, K. S., C. J. Lim, T. J. Han, J. C. Kim and C. D. Jin. 1998. Activation of ascorbate-glutathione cycle in Arabidopsis leaves on response to aminotriazole. J. Plant Biol. 41, 155-161. https://doi.org/10.1007/BF03030248
  13. Kang, H. M., K. W. Park and M. E. Saltveit. 2005. Chilling tolerance of cucumber(Cucumis sativus) seedling radicles is affacted by radicle length, seedling vigor, and induced osmotic- and heat shock proteins. Physiologia Plantarum 124, 485-492. https://doi.org/10.1111/j.1399-3054.2005.00542.x
  14. Lee, D. H. and C. B. Lee. 2000. Chilling stress-induced change of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159, 75-85. https://doi.org/10.1016/S0168-9452(00)00326-5
  15. Lichtenthaler, H. K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  16. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci. 7, 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  17. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867-880.
  18. O'kane, D., V. Gill, P. Boyd and R. Burdon. 1996. Chilling, oxidative stress abd antioxidant responses in Arabidopsis thaliana callus. Planta. 198, 371-377. https://doi.org/10.1007/BF00620053
  19. Padh, H. 1990. Cellular functions of ascorbic acid. Biochem. and Cell Biol. 68, 1166-1173. https://doi.org/10.1139/o90-173
  20. Prasad, T. K., M. D. Anderson, B. A. Martin and C. R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedling and a regulatory role for hydrogen peroxide. The Plant Cell 6, 65-74. https://doi.org/10.2307/3869675
  21. Sambrook, J., E. Fritsch and T. Maniatis. 1989. Molecular cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  22. Sato, Y., T. Murakami, H. Funatsuki, S. Matsuba, H. Saruyama and M. Tanida. 2001. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J. Exp. Bot. 52, 145-151. https://doi.org/10.1093/jexbot/52.354.145
  23. Seki, M., M. Narusaka, J. Ishida, T. Nanjo, M. Fujita, Y. Oono, A. Kamiya, M. Nakajima, A. Enju, T. Sakuri, M. Satou, K. Akiyama, T. Taji, K. Yamaguchi-Shinozaki, P. Carninci, J. Kawai, Y. Hayashizaki and K. Shinizaki. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full length cDNA microarray. Plant J. 31, 279-292. https://doi.org/10.1046/j.1365-313X.2002.01359.x
  24. Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyakawa, T. Takeda, Y. Yabuta and K. Yoshimura. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. of Exp. Bot. 53, 1305-1319. https://doi.org/10.1093/jexbot/53.372.1305
  25. Shimaoka, T., C. Miyake and A. Yokota. 2003. Mechanism of the reaction catalyzed by dehydroascorbate reductase from spinach chloroplast. Eur. J. Biochem. 270, 921-928. https://doi.org/10.1046/j.1432-1033.2003.03452.x
  26. Shimaoka, T., A. Yokota and C. Miyake. 2000. Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol. 41, 1110-1118. https://doi.org/10.1093/pcp/pcd035
  27. Urano, J., T. Nakagawa, Y. Maki, T. Masumura, K. Tanaka, N. Murata and T. Ushimara. 2000. Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Letters 466, 107-111. https://doi.org/10.1016/S0014-5793(99)01768-8
  28. Yabuta, Y., T. Maruta, K. Yoshimura, T. Ishikawa and S. Shigeoka. 2004. Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol. 45, 1586-1594. https://doi.org/10.1093/pcp/pch181
  29. Yoshimura, K., Y. Yabuta, T. Ishikawa and S. Shigeoka. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 123, 223-233. https://doi.org/10.1104/pp.123.1.223
  30. Zhao, S., and E. Blumwald. 1998. Changes in oxidation-reduction state and antioxidant enzymes in the roots of jack pine seedling during cold acclimation. Physiol. Plant 104, 134-142. https://doi.org/10.1034/j.1399-3054.1998.1040117.x
  31. Zlatev, Z. S., F. C. Lidom, J. C. Ramalho and I. T. Yordanov. 2006. Comparision of resistance to drought of three bean cultivar. Biologia Plantrum 50, 389-394. https://doi.org/10.1007/s10535-006-0054-9

Cited by

  1. Changes of Antioxidant Enzymes in Stevia Plants under Clinorotation, Shaking, and Low Temperature Stresses vol.24, pp.4, 2011, https://doi.org/10.7732/kjpr.2011.24.4.343
  2. Response of Monodehydroascorbate Reductase in Lettuce Leaves Subjected to Low Temperature Stress vol.21, pp.3, 2011, https://doi.org/10.5352/JLS.2011.21.3.368