• Title/Summary/Keyword: hydrogen peroxide$(H_2O_2)$

Search Result 925, Processing Time 0.029 seconds

Photo-oxidation of Aqueous Humic Acid using TiO2 Sols-Characterization of Humic Acid in the Chemical Oxidation Treatment(I)- (TiO2 졸을 이용한 수중 Humic Acid의 광산화-화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구(I)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Kim, Mi Sun;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1073-1081
    • /
    • 2000
  • The photo-oxidation of an aqueous humic acid solution using $TiO_2$ sols. which is transparent in visible range, was studied. The $TiO_2$ sols were prepared by a process wherein hydrogen peroxide was added to a gel of $TiO(OH)_2$ originated from hydrolysis of $TiCl_4$, and the resulting titanium peroxo solution(TPS) was heated. The concentration of $TiO_2$ used for photo-oxidation was about 100ppm, determined by comparing the photoluminescence(PL) intensity measured as a function of $TiO_2$ concentration. $TiO_2$ sols aged at $100^{\circ}C$ for more than 12h were found to exhibit a maximum rate in photocatalytic decomposition of humic acid. and the efficiency was better than that of Degussa P25. In addition, the resulting aqueous humic acid after photocatalytic decomposition with sols had an excellent transmittance of visible light, while that treated with Degussa P25 was still turbid. caused by $TiO_2$ particles.

  • PDF

Polyamine 함량이 증가된 형질전환 담배 식물체에서의 스트레스 저항성에 관한 연구

  • Wi, Su-Jin;Park, Gi-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.189-192
    • /
    • 2001
  • We have investigated the effects of abiotic and biotic stresses on leaf senescence using transgenic tobacco plants, in which cellular contents of polyamines were increased by introducing the genes of polyamine and ethylene biosynthesis in sense or antisense orientation. These transgenic plants showed accumulations of polyamines at higher levels than were found in wild-type. Stress-induced senescence was attenuated in transgenic plants cpmpared with wild-type plants, in terms of total chlorphyll loss and phenotypic changes after oxidative stress of hydrogen peroxide($H_2O_2$), high salinity, acid stress (pH3.0), ABA and fungal pathogen(phytophothora parasitica pv.Nicotianae). Transcripts for antioxidant enzyme, glutathionine-S-transferase and catalase, were also more abundant in transgenic plants than wild-type plants. These result suggested that higher expression of those genes caused a broad-spectrum resistance to abiotic stress/biotic stress. These phenomena indicate that polyamines may play an important role in contributing to the antioxidant defense function in plants. Our findings suggest that facilitate the improvement of stress tolerance of crop plants.

  • PDF

Evaluation of DNA Fragments on Boar Sperm by Ligation-mediated Quantitative Real Time PCR

  • Lee, Eun-Soo;Choi, Sun-Gyu;Yang, Jae-Hun;Bae, Mun-Sook;Park, Jin-Young;Park, Hong-Min;Han, Tae-Kyu;Hwang, You-Jin;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.111-116
    • /
    • 2010
  • Sperm chromatin integrity is essential for successful fertilization and development of an embryo. Reported here is a quantification of DNA fragments which is intimately associated with reproductive potential to provide one of criteria for sperm chromatin integrity. Three sperm populations were considered: CONTROL (no treatment), UV irradiation (48mW/$cm^2$, 1h) and $H_2O_2$ (oxidative stress induced by hydrogen peroxide, 10 mM, 50 mM and 100 mM). DNA fragments in boar sperm were evaluated by using ligation-mediated quantitative real-time polymerase chain reaction (LM-qPCR) assay, which relies on real-time qPCR to provide a measure of blunt 5' phosphorylated double strand breaks in genomic DNA. The results in agarose gel electrophoresis showed no significant DNA fragmentation and no dose-dependent response to $H_2O_2$. However, the remarkable difference in shape and position was observed in melting curve of LM-qPCR. This result supported that the melting curve analysis of LM-qPCR presented here, could be more sensitive and accurate than previous DNA fragmentation assay method.

Four active monomers from Moutan Cortex exert inhibitory effects against oxidative stress by activating Nrf2/Keap1 signaling pathway

  • Zhang, Baoshun;Yu, Deqing;Luo, Nanxuan;Yang, Changqing;Zhu, Yurong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Paeonol, quercetin, β-sitosterol, and gallic acid extracted from Moutan Cortex had been reported to possess anti-oxidative, anti-inflammatory, and anti-tumor activities. This work aimed to illustrate the potential anti-oxidative mechanism of monomers in human liver hepatocellular carcinoma (HepG2) cells-induced by hydrogen peroxide (H2O2) and to evaluate whether the hepatoprotective effect of monomers was independence or synergy in mice stimulated by carbon tetrachloride (CCl4). Monomers protected against oxidative stress in HepG2 cells in a dose-response manner by inhibiting the generation of reactive oxygen species, increasing total antioxidant capacity, catalase and superoxide dismutase (SOD) activities, and activating the antioxidative pathway of nuclear factor E2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling pathway. We found that the in vitro antioxidant capacities of paeonol and quercetin were better than those of β-sitosterol and gallic acid. Furthermore, paeonol apparently diminished the levels of alanine transaminase and aspartate aminotransferase, augmented the contents of glutathione and SOD, promoted the expressions of Nrf2 and heme oxygenase-1 proteins in mice stimulated by CCl4. In HepG2 cells, paeonol, quercetin, β-sitosterol, and gallic acid play a defensive role against H2O2-induced oxidative stress through activating Nrf2/Keap1 pathway, indicating that these monomers have anti-oxidative properties. Totally, paeonol and quercetin exerted anti-oxidative and hepatoprotective effects, which is independent rather than synergy.

Electrochemical Degradation of Phenol by Using Reticulated Vitreous Carbon Immobilized Horseradish Peroxidase (Horseradish Peroxidase가 고정화된 다공성 탄소 전극을 이용한 페놀의 전기화학적 분해)

  • Cho, Seung-Hee;Yeon, Kyeong-Ho;Kim, Gha-Young;Shim, Joon-Mok;Moon, Seung-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1263-1269
    • /
    • 2005
  • Horseradish peroxidase, had the phenol degradation rate of 95% in aqueous phase, was covalently immobilized on the surface of reticulated vitreous carbon(RVC) and the degradation of phenol was performed with in situ generated $H_2O_2$-immobilized HRP complex in an electrochemical reactor. The incorporation of carboxylic group on the RVC surface was confirmed by FT/IR spectrometry and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride(EDC) was used for peptide bonds between the carboxylic groups on the RVC surface and amine groups from HRP. The optimal conditions of in situ $H_2O_2$ generation such as concentration($10{\sim}200$ mM) and pH($5.0{\sim}8.0$) of electrolyte, supply of $O_2(10{\sim}50$ mL/min) and applied voltage($-0.2{\sim}-0.8$ volt, vs. Ag/AgCl) from potentiostat/galvanostat were determined by concentration of hydrogen peroxide and current efficiency. It was observed that the RVC immobilized HRP was stable maintaining 89% of the initial activity during 4 weeks. The phenol degradation rate of 86% was attained under the optimal condition of in situ $H_2O_2$ generation.

Antioxidant Effect of Filipendula glaberrima Nakai Extract in HepG2 Cells

  • Hong, Mijin;Hwang, Dahyun
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2022
  • The imbalance of oxidative stress due to the excessive production of reactive oxygen species (ROS) leads to the pathogenesis of liver disease. To prevent this, the role of antioxidant mechanisms is important. Antioxidant studies have been reported on the Filipendula glaberrima Nakai. However, studies applied to HepG2 cells, which are human liver cells, have not yet been conducted. In this study, 70% ethanol extract of Filipendula glaberrima Nakai (FGE) was prepared and antioxidant activity was investigated. It was confirmed whether FGE pretreatment could reduce hydrogen peroxide-induced oxidative stress in HepG2 cells. The increase in gene expression of antioxidant biomarkers and the scavenging ability of ROS were measured, and Hoechst 33342 staining was used to know the inhibitory effect of the apoptosis. As a result, FGE significantly increased SOD (2.6-fold), CAT (4.4-fold), MT-1A (3.1-fold), GPx (4-fold), and G6PD (2.4)-fold compared to the H2O2-treated group. FGE directly inhibited ROS production from 13.4 to 3.6 (the fluorescence mean of DCF-DA) and also reduced apoptotic cells from 45% to 10% (Hoechst 33342 staining) at 2.5 ㎍/mL. These results demonstrate the excellent antioxidant activity of FGE and show that it can be used as a functional food to prevent liver disease.

Comparison of Dye Removal Performance and Oxidants Formation of Insoluble Electrode (불용성 전극의 Dye 제거 성능과 산화제 생성 비교)

  • Yoo, Young-Eok;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1273-1284
    • /
    • 2011
  • The aim of this research was to evaluate the performance of insoluble electrode for the purpose of degradation of Rhodamine B (RhB) and oxidants generation [N,N-Dimethyl-4-nitrosoaniline (RNO, indicator of OH radical), $O_3$, $H_2O_2$, free Cl, $ClO_2$)]. Methods: Four kinds of electrodes were used for comparison: DSA (dimensional stable anode; Pt and JP202 electrode), Pb and boron doping diamond (BDD) electrode. The effect of applied current (0.5~2.5 A), electrolyte type (NaCl, KCl and $Na_2SO_4$) and electrolyte concentration (0.5~3.5 g/L) on the RNO degradation were evaluated. Experimental results showed that the order of RhB removal efficiency lie in: JP202 > Pb > BDD ${\fallingdotseq}$ > Pt. However, when concerned the electric power on maintaining current of 1 A during electrolysis reaction, the order of RhB removal efficiency was changed: JP202 > Pt ${\fallingdotseq}$ Pb > BDD. The total generated oxidants ($H_2O_2$, $O_3$, free Cl, $ClO_2$) concentration of 4 electrodes was Pt (6.04 mg/W) > JP202 (4.81 mg/W) > Pb (3.61 mg/W) > BDD (1.54 mg/W), respectively. JP202 electrode was the best electrode among 4 electrodes from the point of view of performance and energy consumption. Regardless of the type of electrode, RNO removal of NaCl and KCl (chlorine type electrolyte) were higher than that of the $Na_2SO_4$ (sulfuric type electrolyte) RNO removal. Except BDD electrode, RhB degradation and creation tendency of oxidants such as $H_2O_2$, $O_3$, free Cl and $ClO_2$, found that do not match. RNO degradation tendency were considered a simple way to decide the method which is simple it will be able to determinate the electrode where the organic matter decomposition performance is superior. As the added NaCl concentration was increases, the of hydrogen peroxide and ozone concentration increases, and this was thought to increase the quantity of OH radical.

Synthesis, Characterization and Liquid Phase Oxidation of Cyclohexane with Hydrogen Peroxide over Oxovanadium(IV) Schiff-base Tetradendate Complex Covalently Anchored to Multi-Wall Carbon Nanotubes (MWNTs)

  • Salavati-Niasari, Masoud;Bazarganipour, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.355-362
    • /
    • 2009
  • The chemical modification of multi-wall carbon nanotubes (MWNTs) is an emerging area in material science. In the present study, hydroxyl functionalized oxovanadium(IV) Schiff-base; N,N'-bis(4-hydroxysalicylidene)-ethylene-1, 2-diamineoxovanadium(IV), [VO($(OH)_2$-salen)]; has been covalently anchored on modified MWNTs. The new modified MWNTs ([VO($(OH)_2$-salen)]-MWNTs]) have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron (XPS), UV-Vis, Diffuse reflectance (DRS), FT-IR spectroscopy and elemental analysis. The analytical data indicated a composition corresponding to the mononuclear complex of tetradentate Schiff-base ligand. The characterization of the data showed the absence of extraneous complex, retention of MWNTs and covalently anchored on modified MWNTs. Liquid-phase oxidation of cyclohexane with $H_2O_2$ to a mixture of cyclohexanone, cyclohexanol and cyclohexane-1,2-diol in $CH_3$CN have been reported using oxovanadium(IV) Schiff-base complex covalently anchored on modified MWNTs as catalysts. This catalyst is more selective toward cyclohexanol formation.

Antioxidative Effect of Rhus javanica Linne Extract Against Hydrogen Peroxide or Menadione Induced Oxidative Stress and DNA Damage in HepG2 Cells

  • Chun, Chi-Sung;Kim, Ji-Hyun;Lim, Hyun-Ae;Sohn, Ho-Yong;Son, Kun-Ho;Kim, Young-Kyoon;Kim, Jong-Sang;Kwon, Chong-Suk
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.150-155
    • /
    • 2004
  • The free radical scavenging activities and the protective effects of Rhus javanica extracts against oxidative damage induced by reactive oxygen species (ROS) were investigated. n-Hexane, ethyl acetate and water fractions were prepared from a methanol extract. DPPH radical, superoxide anion and hydroxyl radical scavenging activities were estimated. Intracellular ROS formation was quantified using fluorescent probes, 2', 7'-dichlorofluorescin diacetate (DCFH-DA) for hydroxyl radical and dihydroethidium (DHE) for superoxide anion. The oxidative DNA damage was investigated by the comet assay in HepG$_2$ cells exposed either to $H_2O$$_2$ or to menadione. The highest $IC_{50}$/ values for DPPH radical scavenging activity was found in the ethyl acetate fraction with a value of 5.38 $\mu\textrm{g}$/mL. Cells pretreated with $\geq$ 1 $\mu\textrm{g}$/mL of the ethyl acetate extract had significantly increased cell viability compared to control cells, which were not pretreated with the extract. Intracellular ROS formation and DNA damage in HepG$_2$ cells, which were pretreated with the various concentrations of Rhus javanica ethyl acetate extract and then incubated either with $H_2O$$_2$ or with menadione, reduced in a dose-dependent manner. These findings suggest that Rhus javanica might have biologically active components which have strong protective effects against ROS induced oxidative damages to the biomolecules, such as cell membranes and DNA.

The Ca2+-activated K+ (BK) Channel-opener NS 1619 Prevents Hydrogen Peroxide-induced Cell Death and Mitochondrial Dysfunction in Retinal Pigment Epithelial Cells (망막 색소상피세포에서 산화성 세포 손상과 미토콘드리아기능 저해에 미치는 NS 1619의 보호 효과)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1349-1356
    • /
    • 2017
  • Potassium channel openers (KCOs) produce physiological and pharmacological defense mechanisms against cell injuries caused by oxidative stress of diverse origins. Openings of mitochondrial and plasmalemmal $K^+$ channels are involved in the defense mechanisms. This study tested whether NS 1619, an opener of large-conductance BK channels, has a similar beneficial influence on the pigment epithelial cells of retinas. The human retinal pigment epithelial cell line ARPE-19 was exposed to $H_2O_2$-induced oxidative stress in the absence and presence of NS 1619. The degrees of the cells' injuries were assessed by analyzing the cells' trypan-blue exclusion abilities and TUNEL staining. NS 1619 produced remarkable protections against cell injuries caused by $H_2O_2$. It prevented apoptotic and necrotic cell deaths. The protective effect of NS 1619 was significantly diminished when the cells were treated with NS 1619 in combination with the BK channel-blocker paxilline. NS 1619 significantly ameliorated cellular ATP deprivations in $H_2O_2$-treated cells. It helped mitochondria preserve their functional integrity, which was estimated by their MTT reduction abilities and mitochondrial membrane potential. In conclusion, it was suggested that NS 1619 had a beneficial effect on mitochondria in regards to preserving their functional integrity under oxidative stress, and it produces defense mechanisms against oxidant-induced cell injuries in ARPE-19 cells.