Electrochemical Degradation of Phenol by Using Reticulated Vitreous Carbon Immobilized Horseradish Peroxidase

Horseradish Peroxidase가 고정화된 다공성 탄소 전극을 이용한 페놀의 전기화학적 분해

  • Cho, Seung-Hee (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Yeon, Kyeong-Ho (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Kim, Gha-Young (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Shim, Joon-Mok (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Moon, Seung-Hyeon (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST))
  • 조승희 (광주과학기술원 환경공학과) ;
  • 연경호 (광주과학기술원 환경공학과) ;
  • 김가영 (광주과학기술원 환경공학과) ;
  • 심준목 (광주과학기술원 환경공학과) ;
  • 문승현 (광주과학기술원 환경공학과)
  • Published : 2005.12.31

Abstract

Horseradish peroxidase, had the phenol degradation rate of 95% in aqueous phase, was covalently immobilized on the surface of reticulated vitreous carbon(RVC) and the degradation of phenol was performed with in situ generated $H_2O_2$-immobilized HRP complex in an electrochemical reactor. The incorporation of carboxylic group on the RVC surface was confirmed by FT/IR spectrometry and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride(EDC) was used for peptide bonds between the carboxylic groups on the RVC surface and amine groups from HRP. The optimal conditions of in situ $H_2O_2$ generation such as concentration($10{\sim}200$ mM) and pH($5.0{\sim}8.0$) of electrolyte, supply of $O_2(10{\sim}50$ mL/min) and applied voltage($-0.2{\sim}-0.8$ volt, vs. Ag/AgCl) from potentiostat/galvanostat were determined by concentration of hydrogen peroxide and current efficiency. It was observed that the RVC immobilized HRP was stable maintaining 89% of the initial activity during 4 weeks. The phenol degradation rate of 86% was attained under the optimal condition of in situ $H_2O_2$ generation.

용액 상에서 페놀류에 대해 95%의 분해특성을 지니는 동식물세포유래의 효소(horseradish peroxidase, HRP, EC 1.11.1.7)를 다공성 탄소 전극에 고정화시키고 이를 전기화학 반응기에 도입하여 전극반응에 의해 연속적으로 발생되는 과산화수소를 이용하여 페놀의 분해를 수행하였다. FT-IR 분석을 통해 다공성탄소전극 표면에 HRP의 아민기와 펩티드 결합을 위한 카르복실기가 생성되었음을 확인하였고 가교제(coupling agent)로 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC)를 이용하여 공유결합으로 고정화시켰다. 또한 HRP를 활성화 시켜 페놀을 처리하기 위해 전해질로 사용된 인산염 완충용액의 농도($10{\sim}200$ mM)와 pH($5.0{\sim}8.0$), 외부 산소 주입량($10{\sim}50$ mL/min)및 potentiostat/galvanosta에 의한 외부 공급전압($-0.2{\sim}-0.8$ volt, vs. Ag/AgCl)의 조건을 달리하며 RVC 전극 표면에서 발생되는 과산화수소 농도 및 전류효율을 고려하여 최적 자체 발생조건을 결정하였다. HRP가 고정화된 RVC 전극은 초기 고정화된 HRP 활성에 대해 4주 동안 89%의 상대적 효소 활성도(relatively enzymatic activity)를 지니는 안정한 전극임을 확인하였으며 실험실 스케일의 연속식 전기화학 반응기에 도입되어 최적 과산화수소의 발생조건에서 86%의 분해 효율을 보였다.

Keywords

References

  1. J. Hazard. Mater. v.89 Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat Rengaraj, S.;Moon, S.H.;Sivabalan, R.;Arabindoo, B.;Murugesan, V.
  2. The Journal of Supercritical Fluids v.2 Extraction of phenol from water with supercritical carbon dioxide Roop, R.K.;Brenda, A.A.;Dexter, J.;Irvin, T.R.
  3. Catalysis Today v.66 Oxidation of phenol in aqueous solution with copper catalysts Santos, A.;Yustos, P.;Durban, B.;Garcia-Ochoa, F.
  4. Applied Biochemistry and Biotechnology v.60 Peroxidase catalyzed polymerization of phenol Vasudevan, P.T.;Li, L.O.
  5. Water Research v.37 Degradation of phenol using tyrosinase immobilized on siliceous supports Seetharam, G.B.;Saville, B.A.
  6. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics v.1699 Differential substrate behaviour of phenol and aniline derivatives during oxidation by horseradish peroxidase: kinetic evidence for a two-step mechanism Gilabert, M.A.;Hiner, A.N.P.;Garcia-Ruiz, P.A.;Tudela, J.;Garcia-Molina, F.;Acosta, M.;Garcia-Canovas, F.;Rodriguez-Lopez, J.N.
  7. Journal of Chemical Technology and Biotechnology v.76 In situ generation of hydrogen peroxide and its use for enzymatic degradation of 2,4,6-trinitrotoluene Lee, K.B.;Gu, M.B.;Moon, S.H.
  8. Engineering in Life Science v.1 no.6 Kinetics of veratryl alcohol oxidation by lignin peroxide and in situ generated hydrogen peroxide in an electrochemical reactor Lee, K.B.;Gu, M.B.;Moon, S.H.
  9. Degradation of Pentachlorophenol by an Electroenzymatic Method Using lmmobilized Peroxidase Enzyme Kim, G.Y.
  10. Agric. Biol. Chem. v.50 Crystallization and characterization of extracellular fungal peroxidase Shinmen, Y.;Asami, J.;Amach, T.;Shimizu, S.;Yamada, H.
  11. Mol. Cell Biochem. v.34 Contact-site cross-linking agents Kunkel, G.R.;Mehrabian, M.;Martinson, H.G.
  12. Anal. Biochem. v.185 Zero-Iength crosslinkng procedure with the use of active esters Garbarek, Z.;Gergely, J.
  13. Talanta v.55 Detection of phenolic compounds in flow systems based on tyrosinase-modified reticulated carbon electrodes Pena, N.;Reviejo, A.J.;Pingarron, J.M.
  14. Nature v.420 Carbon nanotubes with DNA recognition Williams, K.A.;Veenhuizen, P.T.M.;de la Torre, B.G.;Eritja, R.;Dekker, C.
  15. Environ. Sci. Technol. v.32 Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrometric method using copper (II) ion and 2,9-dimethyl-1,10-phenanthroline Kosaka, K.;Yamada, H.;Matsui, S.;Echigo, S.;Shishida, K.
  16. Journal of Biotechnology v.102 Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase Lee, K.B.;Moon, S.H.
  17. Journal of Chemical Engineering of Japan v.19 Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton's reagent Sudoh, M.;Kodera, T.;Sakai, K.;Zhang, J.Q.;Koide, K.
  18. Science v.221 Peroxidase-catalyzed removal of phenols from coal-conversion waste waters Klibanov, A.M.;Tu, T.M.;Scott, K.P.
  19. Journal of lnorg. Biochem. v.95 Oxidation of 2,4-chlorophenol catalyzed by horseradish peroxidase; characterization of reaction mechanism by UV-visible spectroscopy and mass spectroscopy Enzo, L.;Elena, G.;Silvia, A.;Rosa, P.F.
  20. Water Research v.27 Reactor development for catalyzed polymerization and precipitation of phenols from wastewater Nicell, J.A.;Bewtra, J.K.;Biswas, N.;Taylor, E.
  21. Free Radical Biology and Medicine v.3 Free radical mechanisms in enzyme reactions Yamazaki, I.
  22. Microbiology v.140 Thermostable extracellular peroxidases from Streptomyces thermoviolaceus Iqbal, M.;Mercer, D.K.;Miller, P.G.G.;McCarthy, A.J.
  23. Enzyme Microb. Technol. v.15 Characterization of an extracellular azo dye-oxidizing peroxidase from Flavobacterium sp. ATCC 39723 Cao, W.;Mahadevan, B.;Crawford, D.L.;Crawford, R.L.