• Title/Summary/Keyword: hydrogen peroxide$(H_2O_2)$

Search Result 929, Processing Time 0.029 seconds

Synthetic Wogonin Derivatives Suppress Lipopolysaccharide-Induced Nitric Oxide Production and Hydrogen Peroxide-Induced Cytotoxicity

  • Chun Wanjoo;Lee Hee Jae;Kong Pil-Jae;Lee Gun Hee;Cheong Il-Young;Park Haeil;Kim Sung-Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.216-219
    • /
    • 2005
  • Wogonin (5,7-dihydroxy-8-methoxyflavone) has been reported to exhibit a variety of biological properties including anti-inflammatory and neuroprotective functions. In this study, biological activities of diverse synthetic wogonin derivatives have been evaluated in two experimental cell culture models. Inhibitory activities of wogonin derivatives on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells and on hydrogen peroxide ($H_{2}O_2$)-induced neuronal cell death in SH-SY5Y human neuroblastoma were examined. Wogonin derivatives such as WS2 and WS3 showed more potent suppressive activities on LPS-induced NO production and $H_{2}O_2$-induced cytotoxicity than wogonin itself. In addition, thiol substitution played a minor role in enhancing the activities of the derivatives. These findings may contribute to the development of novel anti-inflammatory and neuroprotective agents derived from wogonin.

Carnosine and Related Compounds Protect against the Hydrogen Peroxide-Mediated Cytochrome c Modification

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.663-666
    • /
    • 2006
  • Carnosine, homocarnosine and anserine might act as anti-oxidants and free radical scavengers in vivo. In the present study, the protective effects of carnosine and related compounds on the $H_2O_2$-mediated cytochrome c modification were studied. Carnosine, homocarnosine and anserine significantly inhibited the oligomerization of cytchrome c induced by $H_2O_2$. All three compounds also inhibited the formation of carbonyl compound and dityrosine during the incubation of cytochrome c with $H_2O_2$. These compounds effectively inhibited the peroxidase activity in the cytchrome c treated with $H_2O_2$. The results suggested that carnosine, homocarnosine, and anserine might protect cytochrome c against $H_2O_2$-mediated oxidative damage through a free radical scavenging.

Characteristic Distributions of $H_2O$$_2$ and $CH_3$OOH in Seoul (서울에서 $H_2O$$_2$$CH_3$OOH의 특징적 분포)

  • 김주애;배성연;김영미;이미혜;박정후
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.171-172
    • /
    • 2003
  • Hydrogen peroxide($H_2O$$_2$)는 오존의 생성과 소멸에 관여할 뿐 아니라 용해도가 높아 액상에서도 중요한 산화제의 역할을 한다. 특히 도시의 오존농도가 증가하며 이를 제어하기 위한 연구가 활발히 진행되고 있는데 이때 $H_2O$$_2$는 오존 화학을 이해하고 저감대책을 세우는데 필요한 지시자의 역할을 한다. 따라서 $H_2O$$_2$의 시ㆍ공간적 분포의 이해는 대기 환경 연구에 필수적이다. (중략)

  • PDF

Effect of Alginic Acid on Experimentally Induced Arthropathy in Rabbit Model (토끼의 관절병증에 미치는 알긴산올리고당의 치료효과)

  • Bai, Young-Hoon;An, Tae-Hun;Lim, Sung-Chul;Pak, Sok-Cheon;Lee, Jae-Chang;Kang, Nam-Hyun;Bae, Chun-Sik
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.153-162
    • /
    • 2002
  • For the induction of arthropathy, 5% hydrogen peroxide($H_2O_2$) was injected for 5 weeks into the intraarticular space of the New Zealand white rabbits to damage articular cartilage. Alginic acid of low molecular weight (2%) made from macromolecular alginate treated with enzyme was administered into articular space at the dose of 5 mg/kg twice a week for 3 and 6 weeks using 1 ml syringe and 26 G needle. Saline was injected for the control. Tissues surrounding the articulation were obtained for the measurements of superoxide dismutase(SOD) activity as a major antioxidant enzyme and malondialdehyde (MDA) as a lipid peroxidation level. Histopathologic examination on the surface of articular cartilage was carried out. Data showed that injection of hydrogen peroxide for 5 weeks had led to the induction of free radical damage and of articular cartilage change as confirmed by microscopic observation. The application of hydrogen peroxide caused a gradual increase in the SODs and MDA. These patterns were similar after 3 and 6 weeks of alginate treatment. Furthermore, microscopic examinations revealed that hydrogen peroxide caused flaking, fibrillation, fissuring, denudation, and hypocellularity in the articular surfaces. In conclusion, lipid peroxidation was demonstrated in the articular cartilage by the administration of hydrogen peroxide in the rabbit model. This lipid peroxidation could be caused by oxygen free radicals. The histologic and enzymatic correlations on lipid peroxidation in the articulation have provided a better understanding of arthropathy. It is possible to take advantage of these findings to evaluate effective alginate dosage more efficiently.

A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H2O2 by Using Polyelectrolyte Multilayers (고분자 전해질 다층박막을 이용한 과산화수소 직접제조 반응 중 활성금속 용출 억제 방법)

  • Chung, Young-Min
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.262-268
    • /
    • 2015
  • In this study, two types of catalysts were prepared via conventional metal supporting method and encapsulation of metal nanoparticles in the polyelectrolyte multilayers constructed on support. The resulting catalysts were applied to the direct synthesis of hydrogen peroxide, and the effect of catalyst preparation method on the catalyst life as well as hydrogen peroxide productivity was investigated. The catalytic activity was strongly dependent upon the acid strength of support regardless of the catalyst preparation methods and HBEA (SAR=25) with strong acidity was superior to other supports to promote the reaction. In the case of metal supported catalyst, while hydrogen peroxide productivity was higher than that of polyelectrolyte multilayered counterpart, the reaction performance was sharply decreased during catalyst recycling due to the metal leaching. On the other hand, construction of polyelectrolyte multilayers on support weakened the influence of acid support on the reaction medium and therefore resulted in the decrease of catalytic activity and the increase of hydrogen peroxide decomposition as well. It is noted, however, that the catalytic activity was maintained after 5 recycles, which suggests that the introduction of polyelectrolyte multilayers on the support is very effective to suppress the unfavorable metal leaching phenomenon during a reaction.

6'-O-Galloylpaeoniflorin Protects Human Keratinocytes Against Oxidative Stress-Induced Cell Damage

  • Yao, Cheng Wen;Piao, Mei Jing;Kim, Ki Cheon;Zheng, Jian;Cha, Ji Won;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.349-357
    • /
    • 2013
  • 6'-O-galloylpaeoniflorin (GPF) is a galloylated derivate of paeoniflorin and a key chemical constituent of the peony root, a perennial flowering plant that is widely used as an herbal medicine in East Asia. This study is the first investigation of the cytoprotective effects of GPF against hydrogen peroxide ($H_2O_2$)-induced cell injury and death in human HaCaT keratinocytes. GPF demonstrated a significant scavenging capacity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, $H_2O_2$-generated intracellular reactive oxygen species (ROS), the superoxide anion radical ($O_2^-$), and the hydroxyl radical (${\cdot}$OH). GPF also safeguarded HaCaT keratinocytes against $H_2O_2$-provoked apoptotic cell death and attenuated oxidative macromolecular damage to DNA, lipids, and proteins. The compound exerted its cytoprotective actions in keratinocytes at least in part by decreasing the number of DNA strand breaks, the levels of 8-isoprostane (a stable end-product of lipid peroxidation), and the formation of carbonylated protein species. Taken together, these results indicate that GPF may be developed as a cytoprotector against ROS-mediated oxidative stress.

Cytoprotective Effect of Taurine against Hydrogen Peroxide-Induced Oxidative Stress in UMR-106 Cells through the Wnt/β-Catenin Signaling Pathway

  • Lou, Jing;Han, Donghe;Yu, Huihui;Yu, Guang;Jin, Meihua;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.584-590
    • /
    • 2018
  • Osteoporosis development is closely associated with oxidative stress and reactive oxygen species (ROS). Taurine has potential antioxidant effects, but its role in osteoblasts is not clearly understood. The aim of this study was to determine the protective effects and mechanisms of actions of taurine on hydrogen peroxide ($H_2O_2$)-induced oxidative stress in osteoblast cells. UMR-106 cells were treated with taurine prior to $H_2O_2$ exposure. After treatment, cell viability, apoptosis, intracellular ROS production, malondialdehyde content, and alkaline phosphate (ALP) activity were measured. We also investigated the protein levels of ${\beta}-catenin$, ERK, CHOP and NF-E2-related factor 2 (Nrf2) along with the mRNA levels of Nrf2 downstream antioxidants. The results showed that pretreatment of taurine could reverse the inhibition of cell viability and suppress the induced apoptosis in a dose-dependent manner: taurine significantly reduced $H_2O_2$-induced oxidative damage and expression of CHOP, while it induced protein expression of Nrf2 and ${\beta}-catenin$ and activated ERK phosphorylation. DKK1, a Wnt/${\beta}-catenin$ signaling inhibitor, significantly suppressed the taurine-induced Nrf2 signaling pathway and increased CHOP. Activation of ERK signaling mediated by taurine in the presence of $H_2O_2$ was significantly inhibited by DKK1. These data demonstrated that taurine protects osteoblast cells against oxidative damage via Wnt/${\beta}-catenin$-mediated activation of the ERK signaling pathway.

Sensitivity of a Hyperactivated Ras Mutant in Response to Hydrogen Peroxide, Menadione and Paraquat

  • 채경희;이경희
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1202-1206
    • /
    • 1998
  • We have explored the impact of altering the Ras-cAMP pathway on cell survival upon oxidative exposures. A hyperactivated Ras mutant of Saccharomyces cerevisiae, intrinsically more sensitive to heat shock than the wild type, was investigated with regard to oxidative stress. In this paper we report that the response of iral, ira2-deleted mutant (IR2.53) to an oxidant, such as hydrogen peroxide (H2O2) or menadione is more sensitive than that of the wild type. IR2.53 showed a dramatic decrease in survival rate when challenged with 0.1 mM H2O2 for 30 min. The greater sensitivity of IR2.53 was also noticed with treatment of 0.01 mM menadione. Prior to oxidative stresses by these oxidants, both the wild type and the mutant were preconditioned with a mild heat shock (37 ℃, 30 min), resulting in improved survivals against oxidative stresses. Rescue of IR2.53 from menadione stress by heat pretreatment was more clearly demonstrated than that from H2O2 treatment. On the other hand, no significant difference was observed between the wild type and the IR2.53 mutant in their survival rates upon paraquat treatments. These findings imply that the mechanism by which H2O2 and menadione put forth their oxidative effects may be closely associated with the cAMP-Ras pathway whereas that of paraquat is independent of the Ras pathway. Finally, the level of glutathione (GSH) was measured enzymatically as an indicator of antioxidation and compared with the survival rate. Taken all these together, this study provides an insight into a mechanism of the Ras pathway regulated by several oxidants and suggests that the Ras pathway plays a crucial role in protection of cell damage following oxidative stress.

The Effect of Hydrogen Peroxide on Inducible Nitric Oxide Synthase Expression in Murine Macrophage RA W264.7 Cells (Murine macrophage RAW264.7에서 과산화수소가 유발형 산화질소 합성효소의 발현에 미치는 영향)

  • Ahn, Joong-Hyun;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.2
    • /
    • pp.172-183
    • /
    • 1999
  • Background: Nitric oxide is a short-lived effector molecule derived from L-arginine by the nitric oxide synthase(NOS). Nitric oxide plays a role in a number of physiologic and pathophysiologic functions including host defense, edema formation, and regulation of smooth muscle tone. Some kinds of cells including macrophage are known to produce large quantities of nitric oxide in response to inflammatory stimuli such as interleukin-$1\beta$(IL-$1\beta$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), interferon-$\gamma$(IFN-$\gamma$) and lipopolysaccharide(LPS). Reactive oxygen species are also known to be important in the pathogenesis of acute cell and tissue injury such as acute lung injury model Methods: Using the RA W264.7 cells, we have examined the ability of oxidant hydrogen peroxide($H_2O_2$) to stimulate nitric oxide production and inducible NOS mRNA expression. Also, we have examined the effects of NOS inhibitors and antioxidants on $H_2O_2$ induced nitric oxide production. Results: Stimulation of RAW264.7 cells with combinations of 100 ng/ml IL-$1\beta$, 100 ng/ml TNF-$\alpha$, and 100 U/ml IFN-$\gamma$ or 100 U/ml IFN-$\gamma$ and $1{\mu}g/ml$ LPS induced the synthesis of nitric oxide as measured by the oxidation products nitrite($NO_2^-$) and nitrate($NO_3^-$). Addition of $250 {\mu}M-2$ mM $H_2O_2$ to the cytokines significantly augmented the synthesis of $NO_2^-$ and $NO_3^-$(p<0.05). When cells were incubated with increasing concentrations of $H_2O_2$ in the presence of IL-$1\beta$, TNF-$\alpha$ and IFN-$\gamma$ at constant level, the synthesis of $NO_2^-$ and $NO_3^-$ was dose-dependently increased(p<0.05). $N^G$-nitro-L-arginine methyl ester(L-NAME), dose dependently, significantly inhibited the formation of $NO_2^-$ and $NO_3^-$ in cells stimulated with LPS, IFN-$\gamma$ and $H_2O_2$ at constant level(p<0.05). Catalase significantly inhibited the $H_2O_2$-induced augmentation of cytokine-induced $NO_2^-$ and $NO_3^-$ formation(p<0.05). But, boiled catalase did not produce a significant inhibition in comparison with the native enzyme. Another antioxidant 2-mercaptoethanol and orthophenanthroline dose-dependently suppressed $NO_2^-$ and $NO_3^-$ synthesis(p<0.05). Northern blotting demonstrated that H:02 synergistically stimulated the cytokine-induced iNOS mRNA expression in RA W264.7. Conclusion: These results suggest that $H_2O_2$ contributes to inflammatory process by augmenting the iNOS expression and nitric oxide synthesis induced by cytokines.

  • PDF

The comparative study on Cell Cytotoxicity of H2O2 and Grapefruit Seed extract (콘택트렌즈 보존제 H2O2와 자몽씨 추출물의 세포 독성 비교 연구)

  • Kim, In-Suk;Yoo, Geun-Chang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.173-180
    • /
    • 2004
  • This study aims to investigate the effects of hydrogen peroxide and grapefruit seed extract used as a chemical and natural disinfectants on human conjunctival cells in vitro. The main component of grapefruit seed extract is a narigin. It is one of the flavonoid types in citrus fruits and f1avonoids are widely recognized as naturally occurring(삭제) antioxidants. Cytotoxicity was determined by mitochondrial activity(MTT assay) and DNA damage was analyzed by measuring Comet assay. In LDH assay, 5% of grapefruits seed extract has been observed as a material is giving recovery effect of damaged cultured conjuctival cells by hydrogen peroxide. And also, each of concentrations has been treated simultaneously with same amounts and cytotoxicity of hydrogen peroxide and grapefruit seed extract have been estimated by LDH leakage assay after 24 hours. In conclusion, H2O2-induced cytotoxicity, apoptosis were Significantly prevented by grapefruit seed extract. It is a main component of bioflavonoids that we can simply take it as food. The present results suggest that grapefruit seed extract is a useful disinfectanct having antioxidant and antiapoptopic activity as a natural product.

  • PDF