• Title/Summary/Keyword: hydrogen gas sensors

Search Result 104, Processing Time 0.026 seconds

Pt-AlGaN/GaN HEMT-based hydrogen gas sensors with and without SiNx post-passivation

  • Vuong, Tuan Anh;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1033-1037
    • /
    • 2019
  • GaN-based sensors have been widely investigated thanks to its potential in detecting the presence of hydrogen. In this study, we fabricated hydrogen gas sensors with AlGaN/GaN heterojunction and investigated how the sensing performance to be affected by SiN surface passivation. The gas sensor employed a high electron mobility transistors (HEMTs) with 30 nm platinum catalyst as a gate to detect the hydrogen presence. SiN layer was deposited by inductively-coupled chemical vapor deposition as post-passivation. The sensors with SiN passivation exhibited hydrogen sensing characteristics with various gas flow rates and concentrations of hydrogen in inert background gas at $200^{\circ}C$ similar to the ones without passivation. Aside from quick response time for both sensors, there are differences in sensitivity and recovery time because of the existence of the passivation layer. The results also confirmed the dependence of sensing performance on gas flow rate and gas concentration.

Improvement of Measurement and Selectivity of Hydrogen Gas Using Multi-gas Sensors (다중 가스센서를 이용한 수소가스 측정 및 선택도 향상 연구)

  • Sun, Jong-Ho;Han, Sang-Bo;Yi, Sang-Hwa;Kim, Kwang-Hwa;Kang, Dong-Sik;Hwang, Don-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.114-119
    • /
    • 2006
  • In this paper, measurement of hydrogen gas using three kinds of gas sensors were studied for improving selectivity and quantification on hydrogen gas. Output characteristics for each sensors were analyzed to some concentrations of hydrogen gas. It was illustrated that the wide range of hydrogen gas concentrations upto 10,000[ppm] can be reliably measured from investigation of concentration ranges with high amplitudes and good resolutions. Also, the combinations of outputs from three kinds sensors were able to improve the selectivity of hydrogen gas.

Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration

  • Eom, Tae Hoon;Kim, Taehoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.382-387
    • /
    • 2020
  • Hydrogen (H2) is considered as a new clean energy resource for replacing petroleum because it produces only H2O after the combustion process. However, owing to its explosive nature, it is extremely important to detect H2 gas in the ambient atmosphere. This has triggered the development of H2 gas sensors. 2-dimensional (2D) graphene has emerged as one of the most promising candidates for chemical sensors in various industries. In particular, graphene exhibits outstanding potential in chemoresistive gas sensors for the detection of diverse harmful gases and the control of indoor air quality. Graphene-based chemoresistive gas sensors have attracted tremendous attention owing to their promising properties such as room temperature operation, effective gas adsorption, and high flexibility and transparency. Pristine graphene exhibits good sensitivity to NO2 gas at room temperature and relatively low sensitivity to H2 gas. Thus, research to control the selectivity of graphene gas sensors and improve the sensitivity to H2 gas has been performed. Noble metal decoration and metal oxide decoration on the surface of graphene are the most favored approaches for effectively controlling the selectivity of graphene gas sensors. Herein, we introduce several strategies that enhance the sensitivity of graphene gas sensors to H2 gas.

Sensing Properties of Hydrogen Gas for the MWCNT Thin Film Sprayed on the Glass Substrate Cured with Plasma and Nitrocellulose (플라즈마 및 니트로셀롤로우스로 처리된 유리기판을 사용한 MWCNT 스프레이 박막의 수소가스 검출특성)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.290-296
    • /
    • 2011
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as a resistive gas sensors for the $H_2$ gas detection. Sensor films were fabricated by the air spray method using the multi-walled CNTs dispersion solution on the glass substrates cured with plasma and nitrocellulose. Sensors were characterized by the resistance measurements in the self-fabricated oven in order to find the optimum detection properties for the hydrogen gas molecular. The sensitivity and the linearity of the MWVNT sensors using the glass substrate cured with plasma for the $H_2$ gas concentration of 0.06~0.6 ppm are 0.013~0.097%/sec and 0.131~0.959%FS, respectively. The MWCNT film was excellent in the response for the hydrogen gas moleculars and its reaction speed was very fast, which could be using as hydrogen gas sensor. The resistance of the fabricated sensors decreases when the sensors are exposed to $H_2$ gas.

Fabrication of Pt/Carbon Nanotube Composite Based Electrochemical Hydrogen Sulfide Gas Sensor using 3D Printing (3D 프린팅을 이용한 Pt/Carbon Nanotube composite 기반 전기화학식 황화수소 가스 센서 제작)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.290-294
    • /
    • 2023
  • Among various types of harmful gases, hydrogen sulfide is a strong toxic gas that is mainly generated during spillage and wastewater treatment at industrial sites. Hydrogen sulfide can irritate the conjunctiva even at low concentrations of less than 10 ppm, cause coughing, paralysis of smell and respiratory failure at a concentration of 100 ppm, and coma and permanent brain loss at concentrations above 1000 ppm. Therefore, rapid detection of hydrogen sulfide among harmful gases is extremely important for our safety, health, and comfortable living environment. Most hydrogen sulfide gas sensors that have been reported are electrical resistive metal oxide-based semiconductor gas sensors that are easy to manufacture and mass-produce and have the advantage of high sensitivity; however, they have low gas selectivity. In contrast, the electrochemical sensor measures the concentration of hydrogen sulfide using an electrochemical reaction between hydrogen sulfide, an electrode, and an electrolyte. Electrochemical sensors have various advantages, including sensitivity, selectivity, fast response time, and the ability to measure room temperature. However, most electrochemical hydrogen sulfide gas sensors depend on imports. Although domestic technologies and products exist, more research is required on their long-term stability and reliability. Therefore, this study includes the processes from electrode material synthesis to sensor fabrication and characteristic evaluation, and introduces the sensor structure design and material selection to improve the sensitivity and selectivity of the sensor. A sensor case was fabricated using a 3D printer, and an Ag reference electrode, and a Pt counter electrode were deposited and applied to a Polytetrafluoroethylene (PTFE) filter using PVD. The working electrode was also deposited on a PTFE filter using vacuum filtration, and an electrochemical hydrogen sulfide gas sensor capable of measuring concentrations as low as 0.6 ppm was developed.

Review and new trends of hydrogen gas sensor technologies (수소센서 기술의 고찰과 최근동향)

  • Han, Sang-Do
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.67-86
    • /
    • 2010
  • Hydrogen is emerging as clean fuel and important industrial raw materials. The hydrogen gas is not sensed by the human olfactory system, But the combustion characteristics of hydrogen is that the ignition is very easy, the propagation speed of the flame is very fast and explosion limits is a wide range of 4 %~75 %. Therefore it is extremely in danger, and the need for its leakage detection technologies is especially important in places such as a production, transportation, storage and usage. The hydrogen sensors are classified with ceramic type, semiconductor type, optical type, electrochemical type and so on. Hydrogen sensors and their technologies are reviewed in detail for materials, fabrication process, sensing characteristics, good point and faults, and production and utilization of sensors be discussed.

An Experimental Study on the Transient Response of Hydrogen Sensors Dependent on Gas Temperature and Humidity (가스의 온도 및 습도 변화에 따른 수소 센서 응답 특성에 대한 실험적 연구)

  • Kim, Young-Doo;Chung, Tae-Yong;Shin, Dong-Hoon;Nam, Jin-Hyun;Kim, Young-Gyu;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.15-19
    • /
    • 2009
  • In this study, the transient responses of hydrogen sensor against abrupt hydrogen release was experimentally studied for three most common types of hydrogen sensors, i.e. the semiconductor type, electrochemical type, and catalytic combustion type. The experimental study was conducted using a 1% hydrogen - 99% nitrogen mixture gas as the standard gas, while the temperature and relative humidity (RH) of the mixture gas was varied from $25^{\circ}C$ to $50^{\circ}C$ and from 50% to 100%, respectively. The temperature of the mixture gas was found to influence the output signal levels of hydrogen sensors, especially the catalytic combustion type. However, the effect of RH on the sensor response was not noticeable in the present experimental study. Thus, the signal levels of hydrogen sensors, in case of catalytic gas sensor need to be calibrated dependent on gas temperature, when the accurate determination of hydrogen concentration is important.

  • PDF

Effect of a Series Connection of a Bi-Electrolyte Hydrogen Sensor in a Leak Detector

  • Han, Hyeuk Jin;Park, Chong Ook;Hong, Youngkyu;Kim, Jong Suk;Yang, Jeong Woo;Kim, Yoon Seo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.6-9
    • /
    • 2015
  • Conventional leak detectors are widely based on helium gas sensors. However, the usage of hydrogen sensors in leak detectors has increased because of the high prices of helium leak detectors and the dearth in the supply of helium gas. In this study, a hydrogen leak detector was developed using solid-state hydrogen sensors. The hydrogen sensors are based on Park-Rapp probes with heterojunctions made by oxygen-ion conducting Yttria-stabilized zirconia and proton-conducting In-doped $CaZrO_3$. The hydrogen sensors were used for determining the potential difference between air and air balanced 5 ppm of $H_2$. Even though the Park-Rapp probe shows an excellent selectivity for hydrogen, the sensitivity of the sensor was low because of the low concentration of hydrogen, and the oxygen on the surface of the sensor. In order to increase the sensitivity of the sensor, the sensors were connected in series by Pt wires to increase the potential difference. The sensors were tested at temperatures ranging from $500-600^{\circ}C$.

Design and Fabrication of MOSFET Type Hydrogen Gas Sensor Using MEMS Process (MEMS 공정기술을 적용한 MOSFET형 수소센서의 설계, 제작에 관한 연구)

  • Kim, Bum Joon;Kim, Jung Sik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.304-312
    • /
    • 2011
  • In this study, MOSFET type micro hydrogen gas sensors with platinum catalytic metal gates were designed, fabricated, and their electrical characteristics were analyzed. The devised MOSFET Hydrogen Sensors, called MHS-1 and -2, were designed with a platinum gate for hydrogen gas adsorption, and an additional sensing part for higher gas sensitivity and with a micro heater for operation temperature control. In the electrical characterization of the fabricated Pt-gate MOSFET (MHS-1), the saturated drain current was 3.07 mA at 3.0 V of gate voltage, which value in calculation was most similar to measurement data. The amount of threshold voltage shift and saturated drain current increase to variation of hydrogen gas concentration were calculated and the hydrogen gas sensing properties were anticipated and analyzed.

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee;Minah, Seo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.397-402
    • /
    • 2022
  • In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.