• Title/Summary/Keyword: hydrogen film

Search Result 669, Processing Time 0.029 seconds

Planarization of the Diamond Film Surface by Using the Hydrogen Plasma Etching with Carbon Diffusion Process (수소 플라즈마 에칭과 탄소 확산법에 의한 다이아몬드막 표면의 평탄화)

  • Kim, Sung-Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.351-356
    • /
    • 2001
  • Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 $^{\circ}C$ by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices.

  • PDF

TiO2 Thin Film Growth Research to Improve Photoelectrochemical Water Splitting Efficiency (TiO2 박막 성장에 의한 광전기화학 물분해 효율 변화)

  • Seong Gyu Kim;Yu Jin Jo;Sunhwa Jin;Dong Hyeok Seo;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.202-207
    • /
    • 2024
  • In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.

Effects of Hydrogen Gas on the Optical Properties of Diamondlike Carbon Thin Films Prepared by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학증법에 의해 형성된 Diamondlike Carbon 박막의 광학적 특성에 미치는 수소가스의 영향)

  • Kim, Han-Do;Ju, Seung-Gi
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.152-158
    • /
    • 1994
  • Diamondlike carbon thin film have been fabricated using methane as a reactive gas by plasma enhanced chemical vapor deposition. Effects of hydrogen gas on the optical properties of the thin film has been investigated. When the hydrogen was used as a secondary gas, the role of hydrogen changed with deposition power unlike inert gases such as Ar and He. From the changes of optical band gap and FT-IR analysis, it was predicted that the chemical etching, sputtering of C-H bond by hydrogen and the implantation of hydrogen into the thin film could occur. The validity of the possibilities was confirmed by examining the effect of secondary gases such as Ar and He.

  • PDF

Structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate (수소 분위기에서 유연 기판 위에 증착된 IZO 박막의 구조적 및 전기적 특성)

  • Jo, D.B.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.29-33
    • /
    • 2012
  • In this study, we have investigated the structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate for the OLED (organic light emitting diodes) devices. For this purpose, PES was used for flexible substrate and IZO thin films were deposited by RF magnetron sputtering under hydrogen ambient gases (Ar, $Ar+H^2$) at room temperature. In order to investigate the influences of the hydrogen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. All the samples show amorphous structure regardless of flow rate. The electrical resistivity of IZO films increased with increasing flow rate of $H^2$ under $Ar+H^2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO electrodes made by configuration of IZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show good current density-voltage-luminance characteristics. This suggests that flat surface roughness and low electrical resistivity of a-IZO anode film lead to more efficient anode material in OLED devices.

Structural and Electrical Characteristics of MZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate (증착 온도 및 수소 유량에 따른 MZO 박막의 구조적 및 전기적 특성)

  • Lee, Jisu;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.6-11
    • /
    • 2018
  • In this study, we have studied the effect of substrate temperature and hydrogen flow rate on the characteristics of MZO thin films for the TCO(Transparent conducting oxide). MZO thin films were deposited by RF magnetron sputtering at room temperature and $100^{\circ}C$ with various $H_2$ flow rate(1sccm~4sccm). In order to investigate the effect of hydrogen gas flow rate on the MZo thin film, we experimented with changing the hydrogen in argon mixing gas flow rate from 1.0sccm to 4.0sccm. MZO thin films deposited at room temperature and $100^{\circ}C$ show crystalline structure having (002), (103) preferential orientation. The electrical resistivity of the MZO films deposited at $100^{\circ}C$ was lower than that of the MZO film deposited at room temperature. The decrease of electrical resistivity with increasing substrate temperature was interpreted in terms of the increase of the charge carrier mobility and carrier concentration which seems to be due to the oxygen vacancy generated by the reducing atmosphere in the gas. The average transmittance of the MZO films deposited at room temperature and $100^{\circ}C$ with various hydrogen gas flow was more than 80%.

Multi-film coated bipolar plates for PEMFC (Proton Exchange Membrane Fuel Cell) application (다층박막 코팅된 PEMFC (Proton Exchange Membrane Fuel Cell)용 바이폴라 플레이트)

  • Jeon, Gwang-Yeon;Yun, Young-Hoon;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.646-648
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

  • PDF

Hydrogen Absorption and Electronic Property Change of Yttrium Thin Films

  • Cho, Young-Sin
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.1
    • /
    • pp.71-79
    • /
    • 1996
  • Yttrium thin film, 580nm thick, was prepared by electron beam evaporation. Film was hydrogenated room temperature upto 40 bar hydrogen pressure, without any activation process. Hydrogen concentration was determined by a quartz-crystal microbalance(QCM) method. YH2.9 sample was made without any pulverization. Electrical resistance was measured by four-point DC method in the temperature range between room temperature and 30K for various hydrogen concentration, x=0 to 2.9 of YHx sample. Temperature dependent resistance of YH2.9 shows low temperature minimum at 105K, the metal-semiconductor transition at 260K, and a hystersis above 210K.

  • PDF

Synthesis of Thin Film Type Cu/ZnO Nanostructure Catalysts for Development of Methanol Micro Reforming System (마이크로 개질기 개발을 위한 박막형 Cu/ZnO 나노구조 촉매 합성)

  • Yeo, Chan Hyuk;Kim, Yeon Su;Im, Yeon Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.193-199
    • /
    • 2013
  • In this work, thin film type Cu/ZnO nanostructure catalysts were fabricated by several synthetic routes in order to maximize the performance of the micro reforming system. For this work, various Cu/ZnO nanostructure catalysts could be synthesized by means of four approaches which are chemical vapor method, wet solution method and their hybrid method. The reforming performance of these as-synthetic catalysts was evaluated as compared to the conventional catalysts. Among the as-synthetic nanostructures, sphere type catalysts with specific surface of $18.6m^2/g$ showed the best performance of hydrogen production rate of 30ml/min at the feed rate of 0.2ml/min. This work will give the first insight on thin film type Cu/ZnO nanostructure catalyst for micro reforming system for hydrogen production of portable electronic systems.

A Novel Hydrogen-reduced P-type Amorphous Silicon Oxide Buffer Layer for Highly Efficient Amorphous Silicon Thin Film Solar Cells (고효율 실리콘 박막태양전지를 위한 신규 수소저감형 비정질실리콘 산화막 버퍼층 개발)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1702-1705
    • /
    • 2016
  • We propose a novel hydrogen-reduced p-type amorphous silicon oxide buffer layer between $TiO_2$ antireflection layer and p-type silicon window layer of silicon thin film solar cells. This new buffer layer can protect underlying the $TiO_2$ by suppressing hydrogen plasma, which could be made by excluding $H_2$ gas introduction during plasma deposition. Amorphous silicon oxide thin film solar cells with employing the new buffer layer exhibited better conversion efficiency (8.10 %) compared with the standard cell (7.88 %) without the buffer layer. This new buffer layer can be processed in the same p-chamber with in-situ mode before depositing main p-type amorphous silicon oxide window layer. Comparing with state-of-the-art buffer layer of AZO/p-nc-SiOx:H, our new buffer layer can be processed with cost-effective, much simple process based on similar device performances.

Study on the Synthesis of Graphene Nanowall by Controlling Electric Field in a Radio Frequency Plasma CVD Process (RF 플라즈마 CVD 프로세스의 전계제어에 의한 그래핀 나노월 성장 연구)

  • Han, SangBo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.45-51
    • /
    • 2014
  • This work carried out for the effective synthesis characteristics of graphene nanowall film by controlling the electric field in a RF plasma CVD process. For that, the bipolar bias voltage was applied to the substrate such as Si and glass materials for the best chemical reaction of positive and negative charges existing in the plasma. For supplying the seed formation sites on substrate and removing the oxidation layer on the substrate surface, the electron bombardment into substrates was performed by a positive few voltage in hydrogen plasma. After that, hydrocarbon film, which is not a graphene nanowall, was deposited on substrates under a negative bias voltage with hydrogen and methane gases. At this step, the film on substrates could not easily identify due to its transparent characteristics. However, the transparent film was easily changed into graphene nanowall by the final hydrogen plasma treatment process. The resultant raman spectra shows the existence of significant large 2D peaks corresponding to the graphene.