• Title/Summary/Keyword: hydrogen evolution reaction(HER)

Search Result 31, Processing Time 0.031 seconds

Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction

  • Ghanashyam, Gyawali;Jeong, Hae Kyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.120-127
    • /
    • 2022
  • Molybdenum disulfide (MoS2) has been widely used as a catalyst for the bifunctional activities of hydrogen and oxygen evolution reactions (HER and OER). Here, we investigated size dependent HER and OER performance of MoS2. The smallest size (90 nm) of MoS2 exhibits the lowest overpotential of -0.28 V at -10 mAcm-2 and 1.52 V at 300 mAcm-2 with the smallest Tafel slopes of 151 and 176 mVdec-1 for HER and OER, respectively, compared to bigger sizes (2 ㎛ and 6 ㎛) of MoS2. The better HER and OER performance is attributed to high electrochemical active surface area (6 × 10-4 cm2) with edge sites and low charge transfer resistance (18.1 Ω), confirming that the smaller MoS2 nanosheets have the better catalytic behavior.

Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery (탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과)

  • Kim, Minseong;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

Identification of a Universal Relation between a Thermodynamic Variable and Catalytic Activities of Pyrites toward Hydrogen Evolution Reaction: Density Functional Theory Calculations (수소발생반응에 대한 Pyrites 표면 촉매 성능 예측: 밀도 범함수 이론 계산)

  • Gang, Jun-Hui;Hwang, Ji-Min;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.87.1-87.1
    • /
    • 2017
  • High functional catalyst to efficiently produce clean and earth-abundant renewable fuels plays a key role in securing energy sustainability and environmental protection of our society. Hydrogen has been considered as one of the most promising energy carrier as represented by focused research works on developing catalysts for the hydrogen evolution reaction (HER) from the water hydrolysis over the last several decades. So far, however, the major catalysts are expensive transition metals. Here using first principles density functional theory (DFT) calculations we screen various pyrites for HER by identifying fundamental descriptor governing the catalytic activity. We enable to capture a strong linearity between experimentally measured exchange current density in HER and calculated adsorption energy of hydrogen atom in the pyrites. The correlation implies that there is an underlying design principle tuning the catalytic activity of HER.

  • PDF

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim;Sang-Mun, Jung;Kyu-Su, Kim;Sang-Hoon, You;Byung-Jo, Lee;Yong-Tae, Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.417-423
    • /
    • 2022
  • With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

Research and Development Trends in Seawater Electrolysis Systems and Catalysts (해수 수전해 시스템 및 촉매 연구 개발 동향)

  • Yoonseong Jung;Tuan Linh Doan;Ta Nam Nguyen;Taekeun Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.567-575
    • /
    • 2023
  • Water electrolysis is undergoing active research as one of the promising technologies for producing effective green hydrogen. Using seawater directly as a raw material for a water electrolysis system can solve the problem of the limitations of existing freshwater raw materials, as seawater accounts for approximately 97% of the water on Earth. At the same time, abundant by-product materials can be obtained, representative examples of which are Cl2, ClO-, Br2, and Mg(OH)2 produced during electrolysis, depending on their composition and pH environment. In order to develop a successful seawater electrolysis system and oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts, it is necessary to understand the causes and consequences of reactions that occur in the seawater environment. Therefore, in this paper, we will investigate the reaction mechanism and characteristics of the seawater electrolysis system as well as the research and development trends of electrochemical catalysts used in anode and cathode electrodes.

Understanding the Effect on Hydrogen Evolution Reaction in Alkaline Medium of Thickness of Physical Vapor Deposited Al-Ni Electrodes (Physical Vapor Deposition 방법으로 제조된 Al-Ni 전극의 두께가 알칼라인 수전해 수소발생반응에 미치는 영향 연구)

  • HAN, WON-BI;CHO, HYUN-SEOK;CHO, WON-CHUL;KIM, CHANG-HEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.610-617
    • /
    • 2017
  • This paper presents a study of the effect of thickness of porous Al-Ni electrodes, on the Hydrogen Evolution Reaction (HER) in alkaline media. As varying deposition time at 300 W DC sputtering power, the thickness of the Al-Ni electrodes was controlled from 1 to $20{\mu}m$. The heat treatment was carried out in $610^{\circ}C$, followed by selective leaching of the Al-rich phase. XRD studies confirmed the presence of $Al_3Ni_2$ intermetallic compounds after the heat treatment, indicating the diffusion of Ni from the Ni-rich phase to Al-rich phase. The porous structure of the Al-Ni electrodes after the selective leaching of Al was also confirmed in SEM-EDS analysis. The double layer capacitance ($C_{dl}$) and roughness factor ($R_f$) of the electrodes were increased for the thicker Al-Ni electrodes. As opposed to the general results in above, there were no further improvements of the HER activity in the case of the electrode thickness above $10{\mu}m$. This result may indicate that the $R_f$ is not the primary factor for the HER activity in alkaline media.

Synthesis and Characterization of Ni4Cr Nanofiber Electrocatalyst for Hydrogen Evolution Reaction (수소발생반응을 위한 Ni4Cr 나노 섬유 전기화학 촉매 합성 및 특성 분석)

  • Lee, Jeong Hun;Jang, Myeong Je;Park, Yoo Sei;Choi, Sung Mook;Kim, Yang Do;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.322-331
    • /
    • 2017
  • Hydrogen evolution reaction(HER) was studied over $Ni_4Cr$ nanofibers(NFs) prepared by electrospinning method and oxidation/reduction heat treatment for alkaline water electrolysis. The physicochemical and electrochemical properties such as average diameter, lattice parameter, HER activity of synthesized $Ni_4Cr$ NFs could be modified by proper electrospinning process condition and reduction temperature. It was shown that $Ni_4Cr$ NFs had average diameter from 151 to 273 nm. Also, it exhibited the overpotential between 0.419 V and 0.526 V at $1mA/cm^2$ and Tafel slope of -334.75 mV to -444.55 mV per decade in 1 M KOH solution. These results indicate that $Ni_4Cr$ NFs with reduction heat treatment at $600^{\circ}C$ show thinnest diameter and highest HER activity among the other catalysts.

Effects of Electrolyte Concentration on Electrochemical Properties of Zinc-Air Batteries (전해질 농도에 따른 아연-공기 전지의 전기화학적 특성)

  • Han, Ji Woo;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.798-803
    • /
    • 2019
  • The self-discharge behavior of zinc-air batteries is a critical issue induced by corrosion and hydrogen evolution reaction (HER) of zinc anode. The corrosion reaction and HER can be controlled by a gelling agent and concentration of potassium hydroxide (KOH) solution. Various concentrations of KOH solution and polyacrylic acid have been used for gel electrolyte. The electrolyte solution is prepared with different concentrations of KOH (6 M, 7 M, 8 M, 9 M). Among studied materials, the cell assembled with 6 M KOH gel electrolyte exhibits the highest specific discharge capacity and poor capacity retention. Whereas, 9 M KOH gel electrolyte shows high capacity retention. However, a large amount of hydrogen gas is evolved with 9 M KOH solution. In general, the increase in concentration is related to ionic conductivity. At concentrations above 7 M, the viscosity increases and the conductivity decreases. As a result, compared to other studied materials, 7 M KOH gel electrolyte is suitable for Zn-air batteries because of its higher capacity retention (92.00 %) and specific discharge capacity (351.80 mAh/g) after 6 hr storage.

Effect of Zinc Based Anodes on Self-Discharge Behavior for Zinc-Air Batteries (아연-공기 전지용 음극재의 자가방전 억제 효과)

  • Jung, Min Seo;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.709-714
    • /
    • 2020
  • For zinc-air batteries, there are several limitations associated with zinc anodes. The self-discharge behavior of zinc-air batteries is a critical issue that is induced by corrosion reaction and hydrogen evolution reaction (HER) of zinc anodes. Aluminum and indium are effective additives for controlling the hydrogen evolution reaction as well as the corrosion reaction. To enhance the electrochemical performances of zinc-air batteries, mechanically alloyed Zn-Al and Zn-In materials with different compositions are successfully fabricated at 500rpm and 5h milling time. Investigated materials are characterized by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), and energy dispersive spectrometer (EDS). Alloys are investigated for the application as novel anodes in zinc-air batteries. Especially, the material with 3 wt% of indium (ZI3) delivers 445.37 mAh/g and 408.52 mAh/g of specific discharge capacity with 1 h and 6 h storage, respectively. Also, it shows 91.72 % capacity retention and has the lowest value of corrosion current density among attempted materials.

Fabrication of Ni-Mo-based Electrocatalysts by Modified Zn Phosphating for Hydrogen Evolution Reaction

  • Im, Han Seo;Park, Seon Ha;Ha, Hyo Jeong;Lee, Sumin;Heo, Sungjun;Im, Sang Won;Nam, Ki Tae;Lim, Sung Yul
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.54-62
    • /
    • 2022
  • The preparation of low-cost, simple, and scalable electrodes is crucial for the commercialization of water electrolyzers for H2 production. Herein, we demonstrate the fabrication of cathodes through Mo-modified Zn phosphating of Ni foam (NiF) for water electrolysis, which has been largely utilized in surface coating industry. In situ growth of electrocatalytically active layers in the hydrogen evolution reaction (HER) was occurred after 1 min of phosphating to form ZnNiMoPi, and subsequent thermal treatment and electrochemical activation resulted in the formation of ZnNiMoPOxHy. ZnNiMoPOxHy exhibited superior HER performance than NiF, primarily because of the increased electrochemically active surface area of ZnNiMoPOxHy compared to that of bare NiF. Although further investigations to improve the intrinsic electrochemical activity toward the HER and detailed mechanistic studies are required, these results suggest that phosphating is a promising coating method and will possibly advance the fabrication procedure of electrodes for water electrolyzers with better practical applications.