• 제목/요약/키워드: hydrogen engine

검색결과 360건 처리시간 0.022초

Effect of Hydrogen Enriched LPG Fuelled Engine with Converted from a Diesel Engine

  • Choi, Gyeung-Ho;Lee, Jae-Cheon;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • 에너지공학
    • /
    • 제15권3호
    • /
    • pp.139-145
    • /
    • 2006
  • The purpose of this study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The objective of this paper is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to avoid abnormal combustion. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. The relative air-fuel ratio was increased from 0.8 to 1.3, and the ignition timing was controlled to be at MBT (minimum spark advance for best torque)

수소를 첨가한 디젤엔진의 연소 및 배기특성에 관한 실험적 연구 (Experimental Study on Combustion and Emission Characteristics of Diesel Engine with Hydrogen Application)

  • 오정모
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.203-209
    • /
    • 2017
  • The International maritime organization(IMO), in an effort to slow down the global warming, proposes reduction in ship's speed as a way to lower the rate emissions from ships. In addition, since ship's fuel cost have been increased, the shipping volumes, fuel-saving technology are being required urgently. Therefore, in this present study, a method of reducing the fuel cost that can improve the performance of the diesel engine was tried by introducing a predetermined amount (0.1~0.3% of the mass amount of fuel used) of hydrogen fuel additive. The experimental conditions of the test engine were 1500rpm and torque BMEP-10b ar. The engine performances (power output, fuel consumption rate, p-max, exhaust temperature) were compared before and after addition of hydrogen fuel additives. This experimental study confirmed reducing at least 2% fuel consumption and 2.19% NOx emission.

오일 소모 저감을 위한 역단류 2행정 프리피스톤 수소기관의 분리 윤활 특성 해석 (An Analysis on Charateristics of Separate Oiling to Reduce Oil Consumption for a 2 Stroke Free-Piston H2 Engine)

  • 변창희;백대하;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.794-799
    • /
    • 2011
  • In order to reduce the oil consumption for a 2 stroke free piston hydrogen fueled engine, the behaviors of residual lubricant oil of the cylinder wall surface were visualized and oil mass emitted into exhaust port was measured by using research engine with cross-head and eccentric crankshaft. As the results, it was shown that characteristics of residual lubricant oil such as oil thickness and distribution were remarkably different from a conventional 4 stroke engine. It was also analyzed that these tendencies relied on the configuration and installed position of the exhaust port, piston pin boss and so on.

하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석 (Analysis of cause of engine failure during power generation using biogas in sewage treatment plant)

  • 김길정;김래현
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.13-29
    • /
    • 2016
  • 본 연구에서는 실제 난지 하수처리장에서 바이오가스를 연료로 사용하여 발전할 때, 가스엔진에서 발생하는 고장 사례에 대한 조사와 분석을 통해 바이오가스 플랜트의 주요 고장원인을 분석하고, 그 대책을 제시하였다. 바이오 가스엔진에 유입되는 바이오 가스 속의 황화수소와 수분 제거설비의 간헐적인 오작동으로 인한 수분이 바이오 가스엔진의 인터쿨러 부식을 초래하였다. 또한 바이오가스 속의 실록산이 이산화규소와 규산염 화합물을 형성하여 피스톤 표면 및 실린더라이너 내벽의 긁힘과 마모 등의 손상을 유발하였다. 연소실과 배기가스 설비에 부착된 물질들은 황화수소와 다른 불순물질이 결합한 것으로 분석되었다. 이러한 원인으로는 바이오 가스 속의 고함량(50ppm이상)의 황화수소가 탈황설비에 장기간 공급되었고, 탈황설비내 활성탄의 파과점 도달에 따른 제거효율 저하 때문에 황화수소가 엔진으로 유입됨으로써 발생한 것으로 사료된다. 또한, 황화수소는 흡착탑의 실록산 제거용 활성탄 기능을 저하시킴으로써 제거되지 않은 실록산 화합물이 엔진으로 유입되어 다양한 형태의 엔진고장을 유발한 것으로 판단된다. 따라서, 황화수소와 실록산, 수분은 바이오 가스엔진 고장의 주요 원인으로 볼 수 있으며, 이 중 황화수소는 고장을 일으키는 다른 물질과 반응하며, 전처리 공정에 중대한 영향을 미치는 물질로 볼 수 있다. 결과적으로, $H_2S$ 제거방법의 최적화가 안정적인 바이오 가스엔진 운영을 위한 필수적인 대책으로 사료된다.

Development of a Hydrogen Peroxide Rocket Engine Facility

  • Ahn, Sang-Hee;S. Krishnan;Lee, Choong-Won
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.131-136
    • /
    • 2004
  • The ongoing developmental studies on the application of hydrogen peroxide for propulsion are briefly reviewed. A detailed design-study of a laboratory scale facility of a hydrogen peroxide mono-propellant engine of 100-N thrust is presented. For the preparation of concentrated hydrogen peroxide, a distillation facility has been realized. Results of water analogy tests are presented. Initial firings using the concentrated hydrogen peroxide were not successful. Low environmental temperature, low contact area of the catalyst pack, and contamination in the hydrogen peroxide were considered to be the reasons. Addressing the first two points resulted in successful firing of the rocket engine.

  • PDF

풍력-태양전지에 의한 수소에너지 생산과 이용 모델 분석 (Model analysis for production and utilization of hydrogen energy from wind power and solar cell)

  • 이기문;박창권;정귀성;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.239-246
    • /
    • 2001
  • Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of thisg century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_{2}$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. The energy and cost analysis performed for hydrogen and electricity production from wind power and solar cell.

  • PDF

수소기관에서 NOx 특성에 관한 연구(1) (The Study on NOx Emission for Hydrogen Fueled Engine(1))

  • 이상준;최경호
    • 한국수소및신에너지학회논문집
    • /
    • 제8권2호
    • /
    • pp.91-97
    • /
    • 1997
  • The goals of this research are to understand the $NO_x$ emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 percent basis heating value of the total fuel. The effects of intake air temperature on $NO_x$ emission were studied. The intake air temperature was controlled by flow rate of liquid nitrogen. The major conclusions of this work include : (i) the tested engine was run without backfire under 70 percent hydrogen fuel supplemented. (ii) radicals of nitrogen gas in the intake pipe were increased by 30 percent and cylinder gas temperature was decreased by 24 percent as the intake air temperature were changed from $23^{\circ}C$ to $0^{\circ}C$ ; and (iii) $NO_x$ emission per unit heating value of supplied fuel was decreased by 45 percent with same decrease of intake air temperature.

  • PDF

초단열 압축스파크 점화개질기를 이용한 바이오 합성가스 생산 연구 (Research of Biofuel Syngas Production Using Superadiabatic Compression Spark Ignition Reformer)

  • 임문섭;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.42-49
    • /
    • 2010
  • Increasing environmental concerns regarding the use of fossil fuels and global wanning have prompted researcher to investigate alternative fuels. The purpose of this study is to investigate the syngas production by biogas reforming using a compression spark ignition engine. The parametric screening studies were carried out according to the variations of oxygen enrichment rate, biogas $CO_2$ ratio, intake gas temperature, and engine revolution. When the oxygen enrichment rate and input gas temperature increased, hydrogen and carbon monoxide were increased. But the biogas $CO_2$ ratio and engine revolution increased, the syngas were reduced. For the reforming of methane 100% only, generation of hydrogen and carbon monoxide was 58% and 17%, respectively. However when the biogas $CO_2$ ratio was 40%, hydrogen and carbon monoxide concentration were about 20% each.

산소부화 압축착화기관을 이용한 메탄으로부터 수소 생산 (Hydrogen Gas Production from Methane Reforming Using Oxygen Enriched Compression Ignition Engine)

  • 임문섭;홍성인;홍명석;전영남
    • 한국대기환경학회지
    • /
    • 제23권5호
    • /
    • pp.557-562
    • /
    • 2007
  • The purpose of this paper is to investigate the reforming characteristics and maximum operating condition for the hydrogen production by methane reforming using the compression ignition engine induced partial oxidation. An dedicated compression engine used for methane reforming was decided operating range. The partial oxidation reforming was investigated with oxygen enrichment which can improve hydrogen production, compared to general reforming. Parametric screening studies were achieved as $O_2/CH_4$ ratio, total flow rate, and intake temperature. When the variations of $O_2/CH_4$ ratio, total flow rate, and intake temperature were 1.24, 208.4 L/min, and $400^{\circ}C$, respectively, the maximum operating conditions were produced hydrogen and carbon monoxide. Under the condition mentioned above, synthetic gas were $H_2\;22.77{\sim}29.22%,\;CO\;21.11{\sim}23.59%$.

수소 에너지 생산, 수송 및 이용에 대한 통합시스템 해석 (Analysis of the total system for production, transportation and utilization of hydrogen energy)

  • 오병수;서석진
    • 한국수소및신에너지학회논문집
    • /
    • 제9권1호
    • /
    • pp.38-45
    • /
    • 1998
  • An energy crisis is expected in near future. Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of coming century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_2$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. A model of the total energy system for production, transportation and utilization of hydrogen is calculated.

  • PDF