• 제목/요약/키워드: hydrogen energy

검색결과 4,216건 처리시간 0.027초

머신러닝 기반 수소 충전소 에너지 수요 예측 모델 (Machine Learning-based hydrogen charging station energy demand prediction model)

  • 황민우;하예림;박상욱
    • 인터넷정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.47-56
    • /
    • 2023
  • 수소 에너지는 높은 에너지 효율로 열과 전기를 생산하면서도 온실가스와 미세먼지 등 유해물질 배출이 없는 친환경 에너지로서, 전 세계적으로 탄소중립으로의 전환을 위한 핵심으로 주목받고 있다. 특히 스마트 수소에너지는 경제적이고 지속 가능하며, 안전한 미래 스마트 수소에너지 서비스로써 수소 에너지의 기반 시설이 디지털로 통합되어 '데이터' 기반으로 안정적으로 운영되는 서비스를 의미한다. 본 논문에서는 데이터 기반 수소 충전소 수요예측 모델 구현을 위해 강원도 내 설치되어 있는 수소 충전소 3곳(춘천, 속초, 평창)을 선정, 수소 충전소의 수요공급 데이터를 확보하였고, 머신러닝 및 딥러닝 알고리즘 7개를 선정하여 총 27종 입력 데이터(기상데이터+수소 충전소 수요량)로 모델을 학습하였고, 평균 제곱근 오차(RMSE)로 모델을 평가하였다. 이를 통해 본 논문에서는 최적의 수소 에너지 수요공급을 위한 머신러닝 기반 수소 충전소 에너지 수요 예측 모델을 제안한다.

TPO/R를 이용한 [Fe2O3, WO3]/지지체의 산화, 환원 특성 연구 (Redox Property of the Supported Fe2O3 and WO3 with TPO/TPR)

  • 김재호;강경수;배기광;김영호;김창희;조원철;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.443-450
    • /
    • 2011
  • The three-reactor chemical-looping process (TRCL) for the production of hydrogen from natural gas is attractive for both $CO_2$ capture and hydrogen production. In this study, redox property of $Fe_2O_3$ and $WO_3$ supported with $ZrO_2$ and $MgAl_2O_4$ were studied with temperature programmed oxidation/reduction (TPO/R) experiment. All metal oxides were prepared by ball mill method. Metal oxides supported with $ZrO_2$ showed the good redox property in TPO and TPR tests. Reduction behavior was matched well the theoretical reduction mechanism. Metal oxides supported with $MgAl_2O_4$ formed a solid solution ($MgFe_{0.6}Al_{1.4}O_4$, $MgWO_4$). $Fe_2O_3$ showed more narrow reaction range and lower reaction temperature than $WO_3$.

국내 수소 생산, 소비 및 유통 현황 (The Status of Domestic Hydrogen Production, Consumption, and Distribution)

  • 김봉진;김종욱;최상진
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.391-399
    • /
    • 2005
  • This paper deals with the survey of domestic hydrogen production, consumption, and distribution. The amount of domestic hydrogen production and consumption has not been identified, and we survey the amount of domestic hydrogen production and consumption by industries. The hydrogen production industries are classified into the oil industry, the petrochemical industry, the chemical industry, and the other industry. In 2004, the amount of domestic hydrogen production was 972,601 ton, which corresponded to 1.9% of the global hydrogen production. The oil industry produced 635,683 ton(65.4%), the petrochemical industry produced 241,970 ton(24.9%), the chemical industry produced 66,250 ton(6.8%), the other industry produced 28,698 ton(2.9%). The hydrogen consumptions of corresponding industries were close to the hydrogen productions of industries except that of the other industry. Most hydrogen was used as non-energy for raw materials and hydrogen additions to the process. Only 122,743 ton(12.6%) of domestic hydrogen was used as energy for heating boilers. In 2004, 47,948 ton of domestic hydrogen was distributed. The market shares of pipeline, tube trailers and cylinders were 84.4% and 15.6%, respectively. The purity of 31,848 ton(66.4%) of the distributed hydrogen was 99.99%, and 16,100 ton(33.6%) was greater than or equal to 99.999%. Besides domestic hydrogen, we also identify the byproduct gases which contain hydrogen. The iron industry produces COG( coke oven gas), BFG(blast furnace gas), and LDG(Lintz Donawitz converter gas) that contain hydrogen. In 2004, byproduct gases of the iron industry contained 355,000 ton of hydrogen.

금속매체 순환식 수소생산 시스템의 성능예측 및 공정선정 (Performance Estimation and Process Selection for Chemical-Looping Hydrogen Generation System)

  • 류호정;진경태
    • 한국수소및신에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.209-218
    • /
    • 2005
  • To find a suitable metal component in oxygen carrier particles for chemical-looping hydrogen generation system(CLH), oxygen transfer capacities of metal components were compared and Ni has been selected as the best metal component. The proper operating conditions to achieve high hydrogen generation rate have been investigated based on the chemical-equilibrium composition analysis for water splitting reactor. Moreover, suitable compositions of syngas from gasifier of heavy residue to achieve high energy efficiency have been investigated by calculation of heat of reaction. Based on the selected operating conditions, the best configuration of two interconnected fluidized beds system for the chemical-looping hydrogen generator has been investigated as well.

수소 정책 동향과 밸류체인별 수소 기술 개발 현황 (Hydrogen Policy Trends and Current Status of Hydrogen Technology Development by Value Chain)

  • 신재은
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.562-574
    • /
    • 2023
  • Carbon neutrality has been suggested to overcome the global climate crisis caused by global climate change. Hydrogen energy is a major way to achieve carbon neutrality, and the developments and policies of hydrogen technology have been proposed to achieve this goal. To commercialize hydrogen energy resources, it is necessary to understand the overall value chain composed of hydrogen production, storage, and utilization and to present the direction of technological developments. In this paper the hydrogen strategies of major countries, including Europe, the United States, Japan, China, and South Korea will be analyzed, and hydrogen technologies by value chain will also be explain. This paper will contribute to understanding the overall hydrogen policy and technology, as both policy and technology are summarized.

수소경제사회구현을 위한 에너지기술개발전략 (Strategy of Energy Technology Development for Establishing the Hydrogen Economy)

  • 이성곤;겐토 모기;김종욱;신성철
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.207-215
    • /
    • 2007
  • The rapid changes of energy environment such as high oil price, united nations framework convention on climate change, and the hydrogen economy have been happening to provide national energy security in the 21st century, we need to build strategic approach for coping with energy environment. From a long-term viewpoint of energy technology development, it's time to develop energy technology with selection and specification. In this study, we build energy technology roadmap for establishing the hydrogen economy with a long-term strategy. We analyze economic spin-offs and commercial potential for establishing energy technology roadmap of energy technology development for establishing the hydrogen economy.

수소경제 실현가능성 제고를 위한 전략적 니치 관리 (Strategic Niche Management for Enhancing Feasibility of the Hydrogen Economy)

  • 박상욱
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.274-282
    • /
    • 2011
  • This paper overviews the concept of the strategic niche management, which emphasises the social aspects of new technologies and calls for relevant government policies for socio-technical transition. Hydrogen energy technologies remain in the niche level, thus the SNM perspective is appropriate to be applied. The reason why, and the way how to see hydrogen as a socio-technical niche are discussed, followed by an analytic argument on hydrogen policies and their SNM characteristics. Final part of the paper deals the design of the socio-technical experiment. It is expected that this paper would contribute to not only policy development but also improving understandings on the socio-technical nature of hydrogen energy of hydrogen community.

금속수소화물-팽창흑연 복합체의 열전달 특성 및 수소 저장 특성 (Heat Transfer Characteristics and Hydrogen Storage Kinetics of Metal Hydride-Expended Graphite Composite)

  • 이평종;김종원;배기광;정성욱;강경수;정광진;박주식;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.564-570
    • /
    • 2020
  • Metal hydride is suitable for safe storage of hydrogen. The hydrogen storage kinetics of the metal hydride are highly dependent on its heat transfer characteristics. This study presents a metal hydride-expended graphite composite with improved thermal conductivity and its hydrogen storage kinetics. To improve the heat transfer characteristics, a metal hydride was mixed and compacted with a high thermal conductivity additive. As the hydrogen storage material, AB5 type metal hydride La0.9Ce0.1Ni5 was used. As an additive, flakes-type expended graphite was used. With improved heat transfer characteristics, the metal hydride-expended graphite composite stores hydrogen four times faster than metal hydride powder.

금속산화물(Cu-ferrite)를 이용한 수소제조 연구 (Study on the hydrogen production using the metal oxide (Cu-ferrite))

  • 박주식;서인태;김정민;이상호;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.201-207
    • /
    • 2004
  • Redox characteristics of metal oxide for hydrogen production by thermochemical water-splitting were investigated. $CuFe_2O_4$ as a redox pair that had a different molar ratio of Cu and Fe were prepared by co-precipitation method. Hydrogen production consisted of water-splitting step and thermal reduction step was performed below 1200K. Redox characteristics of Cu-ferrites were studied using the thermal gravimetric analysis technique. Also, structure change of Cu-ferrite during thermal reduction was investigated using the high temperature controlled XRD. In results, oxygen release of Cu-ferrite during the thermal reduction was initiated at oxygen site combined with Cu. Consequently, oxygen release amount of Cu-ferrite was increased with increase of Cu molar ratio of Cu-ferrite. It was found that thermal reduction of Cu-ferrite was begun at $875^\circ{C}$. It was confirmed that structure of Cu-ferrite was changed to metal and cation excess metal oxide during the thermal reduction step.

IS 프로세스의 HI 분해반응공정을 위한 전해 - 전기투석(EED) HI 농축 (HI concentration by EED for the HI decomposition in IS process)

  • 홍성대;김정근;이상호;최상일;배기광;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.212-217
    • /
    • 2006
  • An experimental study on Electro-electrodialysis (EED) for IS (Iodine-Sulfur) process which is well known as hydrogen production system was carried out for the HI concentration from HIx (HI: $H_2O$ : $I_2$ = 1 : 5 : 1) solution. The polymer electrolyte membrane and the activated carbon cloth were adopted as a cation exchange membrane and electrode, respectively. In order to evaluate the temperature effect about HI concentration in fixed molar ratio, three case of temperature were selected to $60^{\circ}C$, $90^{\circ}C$ and $120^{\circ}C$. The electro-osmosis coefficient and transport number of proton have been changed from 1.95 to 1.21 (mol/Faraday) and 0.91 to 0.76, respectively as temperature increase from $60^{\circ}C$ to $120^{\circ}C$. It can be realized that the HI mole fraction in final stage of EED experiments already over the quasi-azeotrope composition.